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1. Introduction

How should an online platform allocate fees between buyers and sellers? What antitrust

damages should be awarded when the platform raises fees anticompetitively? The theoretical

literature on two-sided markets emphasizes that both the platform’s revenue-maximizing fee

structure and the welfare impacts of those fees are theoretically ambiguous (Evans (2003),

Rochet and Tirole (2006), Rysman (2009)). It is widely understood that both sides of the market

are in theory affected by price changes on either side and that welfare impacts ultimately depend

on the externalities that platform users impose on each other. However, only rough guidance

regarding the relevant factors informing the incidence of harm or optimal pricing is provided

by the theoretical literature on platform economics, and the empirical literature that estimates

those externalities in practice is still underdeveloped. It is of immediate importance to make

progress toward this end; the difficulty of quantifying user interactions is a bottleneck in the

regulation of these increasingly popular platform markets.1

This paper develops a structural auction platform model with endogenous entry of bidders

and sellers in order to quantify network externalities in such a market. In line with the wider em-

pirical auction literature, it exploits a relatively controlled auction environment where strategic

interactions are credibly described by the equilibrium properties of an incomplete information

game.2 Payoffs and equilibrium actions characterize precisely how the entry of an additional

user onto the platform affects the surplus of other users, providing a microfoundation for the

platform’s network externalities. With this novel approach, the identification of network exter-

nalities follows from the identification of primitives of the structural model.3 An added benefit

is that this allows such externalities to be non-linear, depending on the shapes of the latent

bidder and seller valuations and their entry costs.

1For example, sellers claiming that eBay charged supra-competitive fees were denied a class action suit in 2010 due
to the absence of a method for quantifying damages in the presence of network effects (Tracer (2011)). Moreover, the
2018 landmark Supreme Court decision in Ohio v. American Express Co. stipulated that plaintiffs must show harm
on both sides of the market (see, e.g., https://www.nytimes.com/2018/06/25/us/politics/supreme-court-american-express-
fees.html), increasing the urgency of the need for empirical two-sided market studies. See also Bomse and Westrich (2005),
Evans and Schmalensee (2013), and Salop et al. (2021).

2See Hendricks and Porter (2007) on the close links between auction theory, empirical practice and public policy.
3Empirical two-sided market papers instead rely on exclusion restrictions to overcome the reflection problem noted by

Manski (1993), as discussed by Rysman (2019) and Jullien, Pavan, and Rysman (2021).

https://www.nytimes.com/2018/06/25/us/politics/supreme-court-american-express-fees.html
https://www.nytimes.com/2018/06/25/us/politics/supreme-court-american-express-fees.html
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The paper also presents the first structural auction model with selective seller entry (see

Perrigne and Vuong (forthcoming)), which is an important feature of many platform markets.

Seller selection generates an interaction effect that is relevant for identifying how fee changes

affect welfare. Bidders in an auction platform expect lower (reservation) prices when sellers

who value their goods less are attracted to the platform, so bidder entry depends both on

the expected number of sellers that enter and on their types.4 Quantifying the buyer-seller

interaction and how it affects entry is important, as many markets are designed to sell goods

or services from heterogeneous sellers.5 For example, the peer-to-peer lending market, which

is expected to grow globally to over $700 billion by 2030, is designed for individual lenders

to invest in loans by heterogeneous borrowers.6 Selection is a highly-relevant aspect of the

business model of platforms in this market; attracting more creditworthy borrowers makes a

lending platform more valuable to potential investors. By the same reasoning, platforms in the

booming gig economy will be more valuable to job posters when they have a larger pool of

qualified freelancers.7

I exploit a new dataset of vintage wine auctions from an online marketplace that exhibits the

high-level characteristics of such peer-to-peer platforms. Most importantly, users on one side

of the market have private information relevant for the expected surplus of users on the other

side, so that entry decisions are interconnected. Reduced-form evidence is presented to support

that, in the wine auction setting, heterogeneous sellers enter selectively while bidders learn their

valuations after entry. Both results are compelling in this context. Sellers own the wine before

creating a listing on the platform and would know how much they value it. Bidders first need to

understand the wine’s many idiosyncrasies, such as its fill level (informative about the amount

of oxidation), whether it is stored in a specialized warehouse, its provenance, delivery costs, etc.

The two-sided entry setting with seller selection complicates estimating the distribution of

seller valuations. First, the support for the distribution of reserve prices depends on the param-

4Ellison, Fudenberg, and Mobius (2004) first postulate this entry dynamic to be important.
5At a high level, platforms like Prosper, Upwork, Uship, Vinted, and Bondora fit this description.
6The market forecast is provided by Predence Research.
7While definitions of a gig worker vary, Statistica estimates that 38 percent of the US workforce performed freelance

work in 2023 (up from 35 percent in 2020), a trend discussed in recent Forbes articles here and here.

https://www.precedenceresearch.com/peer-to-peer-lending-market
https://www.statista.com/statistics/1387737/share-of-people-freelancing-us/
https://www.forbes.com/sites/forbesbusinesscouncil/2021/08/12/will-the-gig-economy-become-the-new-working-class-norm/?sh=55d299fdaee6
https://www.forbes.com/sites/rebeccahenderson/2020/12/10/how-covid-19-has-transformed-the-gig-economy/?sh=36644b946c99
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eters to be estimated. Second, a full solution method that computes the equilibrium for each

set of candidate parameters is costly to implement —as with the Rust (1987) nested fixed-point

algorithm. Both issues are addressed by an estimation algorithm that resembles the Aguirre-

gabiria and Mira (2002) Nested Pseudo Likelihood estimator for single agent dynamic discrete

choice games, as detailed in Section 4.B. The estimated model primitives are used to perform

three sets of counterfactual analyses.

First, the result that most clearly underscores the role of seller selection in the two-sided

platform setting is that the reduction in seller surplus after a unit increase of the listing fee

is less than one. It is driven by the positive externality that the exclusion of higher-valuation

(cost) sellers from the platform has on other sellers, as this exclusion increases the equilibrium

number of bidders in all remaining listings.8 Consequentially, it is estimated that a £1 increase

in the listing fee lowers the expected surplus for sellers who remain on the platform by only

£0.60-£0.78. The loss in surplus is less for sellers with lower values and for all infra-marginal

sellers when there is greater seller heterogeneity. Moreover, almost all users are better off when

the £1 higher listing fee is paired with a budget-neutral bidder entry subsidy, including most

sellers, despite paying more to create a listing. These results are especially interesting as they

provide evidence for the special circumstance in two-sided markets that users can be better off

despite paying higher fees.

Second, I address the canonical two-sided market pricing problem of how to allocate fees to

user groups. Alternative fee structures can increase platform revenues by up to 40 percent. It

is particularly striking that winning bidders should be given a discount on the transaction price

when paired with a higher seller commission or listing fee. A negative buyer commission would

certainly be innovative for auction platforms but resembles pricing in other two-sided markets,

such as cash-back policies of credit card issuers. Below-marginal cost pricing is consistent with

subsidizing users who generate larger indirect network effects (Rysman (2009)).

8This seller-side externality is referred to as a “lemons effect” (after Akerlof (1970)), to emphasize that it crucially
relies on the presence of private information by users on one side of the market about something that users on the other
side of the market care about. In the auction platform setting, the lemons effect arises because bidders enter based on
the expected distribution of unobserved reserve prices. In peer-to-peer lending platforms it applies when borrowers have
private information about their creditworthiness, as explained in Kawai, Onishi, and Uetake (2022).
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Third, I quantify the currently hard-to-measure welfare effects from anticompetitive fee

changes. I show that the welfare losses from unilateral increases of commissions are larger

than in simpler models without (seller) entry, and unlike what has been assumed previously

(in e.g., McAfee (1993), Ashenfelter and Graddy (2005), and Marks (2009)) even winning bid-

ders are affected. These results are placed in the context of a high-profile 2001 Sotheby’s and

Christie’s commission-fixing case, where a simple (and flawed) rule of thumb was used to award

most of the $512 million settlement to winning bidders.

Overall, the results underscore the importance of accounting for seller selection when evalu-

ating mechanism design changes for auction platforms and provide guidance for making much-

needed progress in applying antitrust policy to specific two-sided markets.

Related literature. This paper builds on a large and influential literature on the nonpara-

metric identification and estimation of auction models. A comprehensive review is provided in

a forthcoming Handbook of Econometrics chapter by Perrigne and Vuong (forthcoming), which

also places the current paper in that literature. To summarize, the key methodological contribu-

tion of this paper is that it develops and estimates a structural auction model with endogenous

entry of heterogeneous sellers and shows how the equilibrium entry decisions of bidders and

sellers are interconnected in an auction platform setting.

Related to the paper are structural analyses accounting for endogenous bidder entry, including

Kong (2020), Fang and Tang (2014), Li and Zheng (2012), Athey, Levin, and Seira (2011), and

Krasnokutskaya and Seim (2011).9 While almost the entire empirical auction literature adopts

the perspective of one seller or assumes seller homogeneity, Elyakime et al. (1994), Larsen and

Zhang (2018), and Larsen (2020) are the few papers accounting for seller heterogeneity but

not entry. Recently, others have estimated demand in large auction markets (e.g., Backus and

Lewis (2016), Hendricks and Sorensen (2018), Bodoh-Creed, Boehnke, and Hickman (2021),

9These papers use the commonly applied Levin and Smith (1994) entry model—also part of the baseline model in
this paper—in which bidders learn their values after entering the auction. A model extension shows how the two-sided
entry model functions in the case of selective bidder entry, as in Samuelson (1985) and Menezes and Monteiro (2000),
and by extension that the presented equilibrium results go through in the intermediate case of the affiliated signal bidder
entry model adopted by, e.g., Gentry and Li (2014), Roberts and Sweeting (2013), and Ye (2007). The latter applies
to marketplaces where bidders already know part of their valuation before entry and requires an additional exclusion
restriction for identification.
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and Coey, Larsen, and Platt (2020)).10 These papers generally focus on dynamic issues for

relatively commoditized goods and rely on steady-state requirements for tractability. Here, the

listing inspection costs associated with the idiosyncratic nature of the goods are exploited to

estimate a (static) two-sided auction platform model with seller heterogeneity.

Also relevant are studies on pricing and demand in two-sided markets (e.g., Lee (2013), Rys-

man (2007), Ackerberg and Gowrisankaran (2006), Fradkin (2017), and Cullen and Farronato

(2020)), which build on an influential theoretical literature. A fundamental difference with these

papers is that I use a structural auction model to quantify the expected user surplus from entry

as a function of the composition of buyers and sellers on the platform. Payoffs from the auction

platform game, therefore, provide a micro foundation for the platform’s network externalities.11

In a recent Handbook of Industrial Organization chapter, Jullien, Pavan, and Rysman (2021)

provide a comprehensive review of both the theory of two-sided markets and the application of

that theory. They additionally link the impact of seller selection found in this paper to an anal-

ysis of seller selection into an internet brokerage platform in Hendel, Nevo, and Ortalo-Magné

(2009). Finally, Athey and Ellison (2011) and Gomes (2014) are conceptually related papers

that model the two-sidedness of position auctions.

The rest of the paper is organized as follows. Section 2 describes the data and provides em-

pirical facts related to the two-sided entry environment. Section 3 presents an auction platform

game fitting to this empirical setting and solves for the equilibrium strategies. Nonparamet-

ric identification and the estimation of model primitives is addressed in Section 4. Structural

estimates are presented in Section 5 and counterfactual simulations in Section 6. Section 7

concludes.

10Backus and Lewis (2016) propose a dynamic model that also accounts for bidder substitution across heterogeneous
goods and apply it in order to estimate demand for compact cameras on eBay. Hendricks and Sorensen (2018) study
bidding behavior for iPads with a model of sequential, overlapping auctions. To estimate the demand for Kindle e-readers,
Bodoh-Creed, Boehnke, and Hickman (2021) employ a dynamic search model with bidder entry. Coey, Larsen, and Platt
(2020) model time-sensitive consumer search and also evaluate the impact of changing the listing fee with that model.

11These are simulated for counterfactual (fee) policies, resulting in a rich pattern of direct and indirect nonlinear
network effects. Typically, the empirical two-sided market literature estimates linear effects by using instrumental variables
or by relying on quasi-experimental variation. In addition, Lee (2013) estimates a dynamic network formation game
in which heterogeneous consumers select into competing platforms and Sokullu (2016) recovers nonlinear effects with a
semiparametric estimator.
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2. Online wine auctions

Auction data for the empirical analysis in this paper come from the online auction platform

www.BidforWine.co.uk (BW). This platform offers a peer-to-peer marketplace for buyers and

sellers to trade their wine and caters (currently) to over 20,000 users. BW is one of 8 UK wine

auctioneers recognized by The Wine Society.12 Importantly, none of the other 7 intermediaries

provide a peer-to-peer format but instead work on consignment to trade on behalf of sellers.

This comes with additional shipping costs and value assessments by the intermediary, which

is worthwhile only for higher-end wine. This naturally positions BW at the lower end of the

market.13 BW is therefore taken to be a monopolist in the UK secondary market for lower-end

fine wine, as its sellers cannot readily switch to Bonhams or Sotheby’s when BW raises fees. To

the extent that there are local marketplaces for these products, their presence is captured by

the opportunity costs of trading on BW.

Items are sold through an English (ascending) auction mechanism with proxy bidding.14 A

soft-closing rule extends the end time of the auction by two minutes whenever a bid is placed

in the final two minutes of the auction. Therefore, there are no opportunities to use a bid

sniping strategy on the BW platform. The combination of proxy bidding with a soft closing

rule suggests that the data are well approximated by the second-price sealed bid auction model.

Table 1 summarizes the fee structure on the platform.

As in most empirical auction settings, bidder valuations likely consist of both common value

and private value components. A few remarks regarding the suitability of the private values

assumption are warranted. First, conversations with the platform’s management suggest that

the platform’s users are reasonably informed about the factors that influence the quality of a

bottle of wine.15 For example, it is widely known that 1961 is a great Bordeaux vintage due

to favorable weather conditions, and that low fill levels (ullage) for the age of the wine point

12The others are Bacchus, Bonhams, Chiswick, Christies, Sotheby’s, Sworders, and Tennants.
13Seller-managed listings are the focus of this paper. BW also offers consignment services for sales of large collections

exceeding five cases or for exclusive wines.
14Bidders submit their maximum willingness to pay, and the algorithm maintains the current price one bidding increment

above the second-highest bid. When the highest bid is less than one increment above the second-highest bid, the transaction
price is the second-highest bid. This differs from the eBay pricing rule (see Hickman, Hubbard, and Paarsch (2017)).

15Management used the term “prosumers” to describe its user base; consumers with some specific knowledge of wine.

www.BidforWine.co.uk
www.bacchuswineauctions.com
https://www.bonhams.com/press_release/30091/
https://www.chiswickauctions.co.uk/auction/details/26%20Mar%202020-Wine--Spirits?au=516
https://www.christies.com/departments/Wine-and-Spirits-61-1.aspx
https://www.sothebys.com/en/search-results.html?query=wine%20department
https://www.sworder.co.uk/
https://www.tennants.co.uk/departments/wine-whisky-spirits
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Table 1—: Fee structure in wine auction data

Fee Bidders / sellers Only if sold Notation Amount / rate For price range

Buyer premium Bidders ✓ cB 0
Seller commission Sellers ✓ cS 0.102 ≤ £200

0.090 £200.01- £1,500
Listing fee Sellers cL £2.1

Notes. The platform also charges a reserve price fee that is made up of £0.6 for raising the minimum bid and
£0.3 for adding a secret reserve price, but these are not part of the analysis, which focuses on fee structure
c = {cB , cS , cL}. All reported fees include a 20 percent value-added tax.

to potential oxidation.16 These details and many more are observable on the listing page.17

Another justification for a common values model would be a resale motive, where bidders plan

to sell the wine in the future at a higher price. Despite associations of wine auctions with

luxury, the scope for profitable resale is limited in the context of the lower-end fine wines in

the sample. A bottle of wine in the main sample sells for £45 on average, delivery costs are

approximately £12-£16, storage is costly, and anticipated future seller fees and the opportunity

costs of time reduce the gains from resale further.18 Overall, while it cannot be ruled out that

some of the bidders on some of the wines will update their valuation after seeing other bids

come in, it is considered reasonable that most of the variation in bidder valuations is due to

variation in bidders’ idiosyncratic tastes for the wine conditional on the rich set of auction-level

observables (described in Section 5).19

A. Data description

The dataset of wine auctions was constructed by web-scraping all open auctions on BW at

30-minute intervals between January 2017 and May 2018. During these intervals, most of what

bidders observe is recorded. Observed wine characteristics include the type of wine (red, white,

rosé, sparkling, or fortified), grapes, vintage, region of origin, delivery and payment information,

storage conditions, returns and insurance, seller ratings and feedback, fill level of the bottle, and

16To highlight the importance of weather conditions for wine quality, Ashenfelter (2008) predicts with surprising accu-
racy the price of a sample of Bordeaux grand Cru’s using weather data.

17By contrast, a common values model is appropriate when bidders expect that other bidders possess additional infor-
mation that would affect their own value of the wine, as in the typical example of OCS oil and gas auctions.

18Only once did a winning bidder sell the wine on BW in my data. This case further refutes a resale motive, as the £55
in revenues from reselling a high-end bottle of Chateau Lafite Rothschild from 1991 are depleted after subtracting the £16
shipping costs on the original transaction and seller commission on the second transaction.

19Moreover, empirical analysis of a common values ascending auction model would be infeasible given the lack of positive
identification results for such a model.
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Table 2—: Auction-level descriptive statistics

N Mean St. Dev. Min Median Max

Hammer price 3,481 140.33 239.68 1.00 82.24 6,000
Number of bidders 3,481 3.10 2.52 0 3 13
Number bottles 3,481 3.70 4.23 1 2 72
Is sold 3,481 0.64 0.48 0 1 1
Price per bottle if sold 2,228 74.81 124.55 0.50 35.00 2,200
Sold in Bond 3,481 0.16 0.37 0 0 1
Seller has feedback 3,481 0.29 0.46 0 0 1
Seller has ratings 3,481 0.73 0.45 0 1 1
Has any reserve 3,481 0.67 0.47 0 1 1
Reserve price 2,333 136.62 264.31 1.00 75.00 6,000

Notes. The hammer price equals the standing price when the auction closes, irrespective of whether the item is
sold. Sold “in bond” indicates that the wine has been stored in a bonded warehouse since arriving in the UK.
Winning bidders can provide textual feedback describing the interaction with the seller, and can also rate the
interaction as “positive”, “neutral”, or “negative”. Whether the listing has a reserve price includes both secret
reserve prices and increased minimum bid amounts.

the seller’s textual description. Summary statistics are reported in Table 2. One-third of listings

are created by a seller with feedback from previous transactions, indicating the consumer-to-

consumer nature of the platform, and 27 percent of sellers have not been rated at all. Seller

identities are observable, but bidder identities are unobservable except for those bidders who

have left feedback after winning an auction. Sixteen percent of the listings offer wine sold

“in bond”, which means that they have been stored in bonded warehouses approved by HM

Customs & Excise since being imported into the UK. The alcohol duty due upon taking the

wine out of storage depends on the alcohol content and whether the wine is still or sparkling,

and the duty amount is observed.

The profile pages of all 15,762 users ever registered were examined as well. When defining a

potential seller as a member who has listed a wine for sale at least once, only 263 out of 2,581

potential sellers created a listing during the sample period. This is suggestive of an entry game,

where the remaining potential sellers presumably had too high opportunity costs of selling (i.e.,

drinking the wine) unless they had nothing to sell during that period. As bidder identities are

not observed, it cannot be determined how many of the 10,856 observed bidders are the same

person.20 In the structural analysis, bidders and sellers are treated as distinct groups of users,

20These statistics are provided for context; population sizes are not used in the estimation of the model primitives.
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but this is an abstraction: the data show that 41 out of the 246 feedback-leaving winning bidders

have also listed a wine for sale. In the model, idiosyncratic conditional value distributions for

buyers and sellers on the platform are allowed (but not required) to be different.

The repetitive recording of bids for ongoing auctions was necessary to approximate the reserve

price distribution. The number of bidders and the standing price are observed every time that

auctions are scraped. Public reserve prices (i.e., raised minimum bid amounts) are recovered as

the standing price when there are no bidders. When a seller sets a reserve price without making

it public as a minimum bid amount, the notifications “reserve not met” or “reserve almost met”

also accompany any standing price that does not exceed the reserve. Secret reserve prices are

approximated as the average of the highest standing price for which the reserve price is not met

and the lowest one for which it is met.21 Only 26 percent of listings have an increased minimum

bid amount, while 44 percent have a (secret) reserve price, and 3 percent have both. In the rest

of the paper, the “reserve price” refers to the maximum of the minimum bid amount and the

approximated secret reserve price. One-third of sellers does not set any form of reserve. This

is especially salient to bidders by the presence of a “no reserve price” button —observable even

before they enter the listing. Correspondingly, the model is constructed to result in a different

distribution of the equilibrium number of bidders for these two listing types.

The sample includes 3, 481 auctions after excluding auctions that were consigned, include

spirits, or involve the sale of multiple lots at once. While there is a significant range of hammer

prices, 80 percent of auctions fall in the lowest seller commission bracket (≤ £200) while having

a reserve price lower than £200. These auctions are the focus of this paper and are referred

to as the “main sample”. The empirical analysis controls for observable wine characteristics in

order to estimate idiosyncratic residual value distributions for bidders and sellers. To still assess

heterogeneous impacts of fee changes in different product classes, especially for the counterfac-

21If all bids were recorded in real-time, this approximation would be accurate up to half a bidding increment due to
the proxy bidding system. Additionally, the 30-minute scraping interval approximates well the reserve price distribution
obtained in a smaller sample where bids are recorded at 30-second intervals, as documented in Online Appendix G. The
accuracy of the reserve price approximation is also established separately when taking out unsold lots, for which the secret
reserve price can only be bounded from below. Treating the approximated reserve price as data in the remainder of the
paper can be considered a cautious approach, in the sense that seller heterogeneity and its impact on bidder entry will be
underestimated when recognizing that higher-reserve listings are —all else equal— less likely to result in a sale.



ESTIMATING AN AUCTION PLATFORM GAME WITH TWO-SIDED ENTRY 11

Table 3—: Seller-level descriptive statistics

Statistic N Mean St. Dev. Min Median Max

Average number of words in description 254 73.13 83.54 3.00 46.00 772.00
Probability allowing for collection 254 0.60 0.48 0.00 1.00 1.00
Number of sold listings 254 7.43 23.12 0.00 2.00 237.00
Number of bottles per listing 254 3.05 5.62 1.00 1.25 72.00
If multiple listings: number of bottles per listing 143 2.42 2.58 1.00 1.43 13.21
If multiple listings: share with r > 0 143 0.56 0.46 0.00 0.75 1.00
If multiple r > 0 listings: share with r secret 94 0.54 0.48 0.00 0.75 1.00

Notes. Descriptive statistics across sellers based on the full estimation sample. When excluding three frequent
sellers, the maximum number of sold listings drops to 92, and the other statistics are nearly identical.

tual policy simulations in Section 6, the model is estimated separately for “high-end” auctions

that have hammer prices between £200 and £800 and reserve prices of at most £800.

B. Seller side

Sellers can be thought of as individual collectors with private values (marginal costs) for

each wine, which resonates with the way they are described by the platform’s management (see

footnote 15). To support this, a substantial share of sellers engages very infrequently with the

platform: about half of them are only observed once during the sample period. The median

seller sells 2 items during the 15 months spanning the sample. The most frequent seller sold

16 listings per month, and when excluding the three sellers that list the most frequently, the

maximum sales is only 6 items per month (see Table 3). Moreover, sellers that are observed

multiple times typically alternate between setting a positive and a zero reserve price.

In addition, there is substantial heterogeneity in various observable seller traits. For instance,

they reside in all corners of the UK and differ in how many words they use to describe a wine —

varying from a sober “Original Wooden Case” to a 772-word history lesson about the origins of

the “Les Bosquets des Papes” vineyard of Chateauneuf du Pape.22 These remarks illustrate that

it is reasonable to assume that sellers are heterogeneous, too, in their unobserved idiosyncratic

values for a wine just as bidders have idiosyncratic tastes. Moreover, it is compelling that

22The most verbose wine description is by a seller residing in South London who has been on the platform since March
2012 and is a stellar seller according to 12 feedback-leaving winning bidders. To quote two of them: “Great service. Popped
over and handed me the wine. Will deal with this gentleman again.” “Wines delivered to my office near seller’s house.
Both were in top condition and enjoyed over the festive season.”
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sellers know their idiosyncratic values before entering the platform considering that they own

the wines they offer for sale and sometimes have owned them for decades.23 This implies that

counterfactual fee structures affect the type of sellers that is attracted to the platform, and not

just their number.

C. Bidder side

Selective seller entry has interesting ramifications for bidder entry into such platforms as well,

as outlined in Ellison, Fudenberg, and Mobius (2004). For bidders, entry is the act of entering

into a listing on the platform. Whether bidders know their value for a wine before entering will

affect how profitable it is to attract additional bidders by changing fees. As bidder identities

are unknown, I rely on indirect empirical evidence to determine this.

First, OLS regression results are consistent with non-selective bidder entry: while an extra

bidder in an auction is associated with a transaction price that is approximately £10 higher,

markets (months) that attract more total bidders for a product do not have significantly different

prices.24 By contrast, selective bidder entry would appear in the data as markets that have more

listings of a certain product attracting more total bidders and having stochastically lower bids,

given that bidders with higher valuations would enter first.

Nonselective bidder entry describes the case where bidders learn their valuations after in-

specting the auction characteristics. That is plausible as the wines offered for sale are preowned

by heterogeneous sellers, who report much for bidders to inspect: the wine’s storage conditions,

provenance, bond status, and other relevant characteristics that are not provided in the brief

landing page excerpts. The wine’s ullage classification (fill level), also indicated by the seller,

provides an important measure of the degree of oxidation.25

The data can also speak to the presence of listing inspection costs, which render listings

23Online Appendix C contains additional empirical validation, albeit based on limited variation in the data.
24See Table B. 1 in the online appendix. The coefficient on the total number of bidders in the market is economically

small and statistically insignificant (−0.013 with a standard error of 0.074 for zero reserve auctions in the main sample).
This is robust to numerous specifications. In this reduced-form analysis, a market is a month and a product a combination
of the high-level filters used on the platform: type of wine, region of origin, and vintage decade.

25In Bordeaux-style bottles for instance, the classification “Base of Neck” is better than “Top Shoulder”, while
Burgundy-style bottles without a pronounced “neck” and “shoulders” have a metric fill level in cm. from the capsule.
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Table 4—: Thin markets

— Percentiles: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of times product listed, 4 weeks: 1 1 1 1 1 2 2 3 6 37
Number of times product listed, 15 months: 1 1 1 1 2 3 4 8 16.2 222
Number of times same title occurs, 15 months: 1 1 1 1 1 1 1 1 2 17

Notes. The table reports deciles of distributions of the number of times a product or listing title is observed in
the sample. In the first row, an observation is a product in each 4 week non-overlapping interval. Conservative
product definitions are used (region x wine type x vintage decade), corresponding to high-level filters on the
website, and products that do not occur in a month are not counted to avoid the large mass at 0. In the second
row an observation is a product and in the third row it is the title of the listing, in both cases counting how often
they occur within the full 15 months of the sample.

independent of each other even when they have similar product characteristics or end in close

proximity to each other. In other words, listing inspection costs deplete the expected surplus

from entering another auction after having entered the current one. Indeed, OLS regressions

confirm that additional competing listings does not systematically affect the average number of

bidders per listing, transaction price, or reserve price.26

D. Conclusions from empirical facts

The presented empirical patterns underscore that the auction platform under consideration

is notably distinct from those studied previously. Auction platform models with dynamic or

static search elements and without seller selection (or entry) have fittingly been estimated

for more commodity-like products.27 One distinguishing feature of an auction platform with

heterogeneous goods is that at each point in time, the platform contains a low number of highly

similar listings. This is certainly true for the BW wine auction platform, as documented in

Table 4. Even with coarse product definitions, for 50 percent of listings on BW there is only

one such product offered during the same month, and for another 30 percentage points, only

three such products are available. The next section presents a parsimonious model suitable to

study auction platforms with two-sided entry, selection of heterogeneous sellers, and a listing

inspection cost.

26See Table B. 2 in the online appendix. These results are consistent across 18 different competing listing definitions.
27Structural auction (platform) models have been applied to the study of compact cameras (Backus and Lewis (2016)),

Kindle e-readers (Bodoh-Creed, Boehnke, and Hickman (2021)), iPads (Hendricks and Sorensen (2018)), pop music CDs
(Nekipelov (2007)), CPUs (Anwar, McMillan, and Zheng (2006)), and iPods (Adachi (2016)).
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3. A model of an auction platform with two-sided entry

This section develops an empirically tractable structural auction platform model with two-

sided entry and solves for the game’s equilibrium strategies.

A. Setting and model assumptions

Consider a monopoly platform with second-price sealed bid auctions to allocate indivisible

goods among bidders with unit demands. Let NB and N S denote the sets of potential bidders

and sellers that consider trading on this platform. FV and FV0 denote the valuation distributions

for potential bidders and sellers, respectively, conditional on auction-level observables introduced

below. V0 is equivalently interpreted as a seller’s (marginal) cost of selling. The following

assumptions on the conditional valuation distributions are maintained:

Assumption (Two-sided Independent Private Values (IPV)). All i = {1, ..., |NB|} potential

bidders independently draw idiosyncratic values vi from V ∼ FV and all k = {1, ..., |N S |}

potential sellers independently draw values v0k from V0 ∼ FV0 such that:

i) vi ⊥ vi′ ∀i ̸= i′ ∈ NB, and

ii) vi ⊥ v0k ∀i ∈ NB and ∀k ∈ N S.

Further, FV and FV0 satisfy: supp(V )=[v, v], supp(V0)=[v0, v0], FV (with density function fV )

is absolutely continuous and x− 1−FV (x)
fV (x) is non-decreasing in x ∀x ∈ [v, v].

Most importantly, these assumptions guarantee that conditional on the vector of observed

product attributes, variation in values across buyers and sellers is of a purely idiosyncratic

—private values— nature. In addition, the idiosyncratic variation is independent. Auction

subscripts are omitted as this applies to all auctioned items. Note that the two valuation

distributions, including their supports, are allowed but not restricted to differ for populations

on the two sides of the market (potential sellers and bidders). The final condition states that

the distribution of bidder values satisfies Myerson (1981)’s regularity, which is necessary for a

unique optimal reserve price.

Accounting for observed auction-level heterogeneity, it is furthermore convenient to assume
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that values are multiplicative in the idiosyncratic value term and in the valuation that buyers

and sellers have for the observed product attributes. Letting the value of the observed attributes

be denoted by q, which is interpreted as the item’s quality, and letting Ṽi (Ṽ0k) denote the total

valuation of a buyer (seller) for that item, it holds that

Assumption (Common quality). Ṽi = qVi and Ṽ0k = qV0k, with q ⊥ (Vi, V0k).

This form is convenient because it can be shown that the game scales in q so that the de-

pendence on observed product attributes can be omitted from the equilibrium analysis.28 The

game’s equilibrium results are presented in homogenized value space (i.e., with q = 1), based on

the conditional values of bidders and sellers.

This setting is modeled as a two-stage game. In the first stage, potential sellers —owning a

good and knowing their valuation for it— decide to create a listing or not, and potential bidders

decide to enter or not after observing the number of listings on the platform and whether they

have a reserve price.29 Listings are ex-ante identical up to having a reserve price, so conditional

on this bidders are sorted with some constant probability over listings.30 In the second stage,

sellers set a secret reserve price and bidders bid after learning their valuations.31

The platform’s fee structure c = {cB, cS , cL} contains, respectively, a buyer premium, a seller

commission (both are shares of the transaction price), and a listing fee, any of which might be

zero. Risk-neutral users face deterministic opportunity costs of time spent on the platform, on

top of any monetary fees charged. For bidders, these are referred to as “listing inspection costs”

associated with each listing they enter and denoted by eB.
32 The opportunity costs of time for

28With a common multiplicative quality term, the reserve price is homogeneous of degree one in q, so that also the sale
probability is independent of q, and both the seller’s expected revenue and listing-level surplus are homogeneous of degree
one in q. These properties are derived in Online Appendix A. As a result, the game scales in q up to the additive cL, and
the role of cL is shown to be minimal in numerical simulations, as documented in Online Appendix J.

29One way to justify this assumption is that the platform in the empirical application attaches a highly visible “no
reserve price” button to auctions without a reserve price, which bidders observe before selecting a listing. The distinction
also helps to clarify the source of the two-sidedness of auctions with positive secret reserve prices in the model.

30When bringing the model to data, listings can be grouped according to additional observables.
31In a more general sense, the secret reserve price represents an aspect of the seller side that is imperfectly observed by

buyers before entering the platform while being important for their expected surplus. To show that the assumption that
bidders learn their valuations after entering does not drive the equilibrium results, an extension with selective bidder entry
is presented in Online Appendix E. The non-selective bidder entry assumption made in the baseline model reflects the idea
that the model describes two-sided entry in a platform with significant listing heterogeneity and (associated) costly listing
inspection. The reduced form evidence presented in Section 2 supports this assumption for the BW platform.

32Note that any option value for bidding in an auction is depleted by bidders’ zero profit entry condition given the
assumption that each listing incurs its own eB . Hence, the inter-auction dynamics captured in Kong (2021) and Hendricks
and Sorensen (2018) do not arise in this model.
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sellers are denoted by eS and both are also referred to as “entry costs”.33

The valuation distributions, platform fees, and entry costs, and allocation mechanism are

assumed to be common knowledge. To simplify the exposition, the model contains two sepa-

rate potential bidder populations that differ only by a preference for positive- or zero reserve

auctions.34 As such, NB
r=0 and NB

r>0 denote the number of potential bidders for no reserve

and positive reserve auctions, respectively. The equilibrium results are derived under a large

population approximation, which guarantees the empirical tractability of the game and does

not require players to know these exact population sizes.

Assumption (Poisson game). The populations NB
r=0 and NB

r>0 are large, so that the number

of bidders per listing has a probability mass function approximated by

(1) fNr(n;λr) =
exp(−λr)λ

n
r

n!
, ∀n ∈ Z+,

for r ∈ {r = 0, r > 0} denoting zero and positive reserve price auctions, respectively.

In other words, it is assumed that the population of potential bidders considering whether

or not to enter the platform is large relative to the number of bidders in a listing, so that the

distributions of the number of bidders per listing are approximately Poisson.35 The Poisson

parameters (λr>0, λr=0) are determined in equilibrium.

Equilibrium strategies are solved by backward induction. Attention is restricted to symmetric

Bayesian-Nash equilibria in weakly undominated strategies requiring that strategies are best-

responses given competitors’ strategies and that beliefs are consistent with those strategies in

equilibrium.

33As values scale in q, the outside option of buying or selling a higher-quality item also scales in q, and the scaled
opportunity costs are given by ẽS = qeS and ẽB = qeB .

34The results would be identical with one pool of potential bidders who are in equilibrium indifferent between the two
types of listings. Just as with two populations, as dictated by the zero profit entry conditions, potential bidders would
enter into positive- and zero reserve auctions to the point of depleting all expected surplus. It is, however, a restriction
that all potential bidders draw their values from the same distribution rather than that bidders in positive and zero reserve
price auctions are systematically different. Data from the empirical application supports this assumption. Bidder identities
are generally unobserved, but for 247 bidders their identities are known as they won an auction and left feedback to the
seller. From the 133 feedback-leaving winning bidders that are observed multiple times, 70 percent has won in both zero-
and positive reserve auctions, so at least in this small sample the majority of bidders enter both types of listings over time.

35This assumption, also made in Engelbrecht-Wiggans (2001), Bajari and Hortaçsu (2003), Jehiel and Lamy (2015),
and Bodoh-Creed, Boehnke, and Hickman (2021), fits the platform setting (see panel f in Figure 1). Online Appendix A
proves that the relevant decomposition property of the Binomial distribution exploited also in Myerson (1998) applies to
the presented model where the total number of bidders who enter is a function of the number of listings. Proof that the
approximation does not drive equilibrium existence and uniqueness is provided in Online Appendix D.
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B. Equilibrium strategies: auction stage

Conditional on entry decisions and the sorting of bidders over listings, the heterogeneous-

good auction platform is made up of independent second-price sealed bid auctions. Standard

bidding and reserve pricing strategies are therefore derived, as functions of the commissions. In

particular, a bidder with valuation v bids

(2) b∗(v) ≡ v

1 + cB
,

with the optimal bid decreasing in cB. This follows directly from Vickrey (1961): bidding more

may result in negative utility and bidding less decreases the probability of winning without

affecting the transaction price.

Auctions without a reserve price attract more bidders, but the benefit of setting a positive

reserve price increases in the seller’s value. Combined with a positive reserve price fee, the set of

sellers that sets a zero reserve price is determined by a threshold-crossing problem (as in Jehiel

and Lamy (2015)). The threshold is denoted by vR0 and is taken to be exogenous to simplify

the estimation of the game.36 A seller with valuation v0 ≥ vR0 sets an optimal reserve price

r∗ ≡ r∗(v0) that solves

(3) r∗ =
v0

1− cS
+

1− FV

(
(1 + cB)r

∗)
(1 + cB)fV

(
(1 + cB)r∗

) ,
which is increasing in v0 and cS , and decreasing in cB.

37. A seller with v0 < vR0 sets a zero

36Numerical simulations based on the estimated model primitives confirm that changes in cS and cL both have a
negligible effect on vR0 compared to the effect that they have on the seller’s equilibrium platform entry threshold (v∗0 ,

characterized in Section 3.C), and that vR0 moves in the same direction as v∗0 (see Figure H.2 in the online appendix). The

latter rules out that endogenizing vR0 could lead to multiple equilibria —with the caveat that the simulations are based

on model primitives that are estimated under equilibrium uniqueness. It also means that letting vR0 respond to fees would

strengthen the importance of seller selection for bidder entry, so one can interpret the results for fixed vR0 as conservative
in that sense. Moreover, endogenizing the threshold to set no reserve would be especially interesting when studying reserve
price fees. This, and a more detailed analysis of the reserve price choice, is left for future research and might provide
additional insight into unresolved puzzles regarding the use of secret reserve prices in auctions (see Jehiel and Lamy (2015)
and references in Hasker and Sickles (2010)).

37This is shown in Online Appendix A. Note that, if cS = cB = 0, the optimal reserve price is identical to the Riley
and Samuelson (1981) public reserve price in auctions with a fixed number of bidders. The reserve price does not affect
the number of bidders in the seller’s listing because it is secret. If sellers compete in public reserve prices (as in McAfee
(1993)) the mark-up disappears in equilibrium. The reserve price decreasing in cB is obvious when FV has an increasing
failure rate (fV (x)(1 − FV (x))−1 increases in x). The model imposes the slightly weaker Myerson’s regularity condition
on FV , so numerical simulations confirm that IFR applies and that r∗ decreases in cB in the application.
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reserve price. In what follows, the buyer premium-adjusted optimal reserve price is denoted by

r̃ ≡ (1 + cB)r
∗(v0).

Next, the expected listing-level surpluses for bidders and sellers in the auction stage are

defined for auctions with and without reserve prices. All listing-level surpluses are zero when

there are no bidders. The expected surplus for a bidder in a listing with a positive reserve price,

before the bidder knows his valuation, when there are n bidders and the seller has a value of v0

(to be taken expectations over in the entry stage) equals, for n ≥ 1

πr>0
B (n, v0) ≡

1

n
E
[
Vn:n −max{Vn−1:n, r̃}|Vn:n ≥ r̃

][
1− FVn:n(r̃)

]
.(4)

Vi:n refers to the (n − i + 1)th highest out of a sample of n draws from random variable V , so

Vn−1:n denotes the second-highest valuation (equal to zero when n = 1), and the last term in

(4) is equal to the sale probability. Key properties of πr>0
B (n, v0) are that it decreases in n and

v0, the latter because r∗ is increasing in v0, and decreases in cS and cB for a given v0.
38 In

auctions with a zero reserve price, the dependence on v0 disappears and items are always sold

when n ≥ 1, so the expected bidder surplus in those auctions simplifies to

πr=0
B (n) ≡ 1

n
E
[
Vn:n − Vn−1:n

]
,(5)

independent of v0, cS , and cB, and decreasing in n. On the seller side, the expected surplus for

a seller with valuation v0 in positive reserve auctions equals, for n ≥ 1

πr>0
S (n, v0) ≡

[
(1− cS)E

[
max{Vn−1:n, r̃}|Vn:n ≥ r̃

]
− v0

][
1− FVn:n(r̃)

]
.(6)

In the case without a reserve price, this simplifies to

πr=0
S (n) ≡ (1− cS)E

[
Vn−1:n

1 + cB

]
− v0.(7)

38The expected surplus per bidder decreasing in the number of competitors in the auction is shown by Li (2005) to be
without loss of generality when FV has an increasing failure rate. See also footnote 37.
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Both πr>0
S (n, v0) and πr=0

S (n, v0) decrease in v0, cB, and cs, all by reducing gains from trade,

increase in n by driving up expected transaction prices and with r∗ being independent of n.

C. Equilibrium strategies: Entry stage

Sellers adopt the strategy to enter only if their valuation is below an equilibrium threshold

value (denoted by v∗0) because their expected surplus from entering decreases in their valuation,

v0, and because they know v0 when making their entry decisions. Bidders, on the other hand,

learn their valuations after entering and therefore enter with some equilibrium probability (as

in Levin and Smith (1994)). Under the large population approximation, the entry equilibrium

on the bidder side is fully characterized by the equilibrium mean number of bidders per listing

(λ∗
r=0 and λ∗

r>0, defined in (I.5)), depending on the platform’s fee structure.39 A trivial no-trade

equilibrium where no bidders and sellers enter is excluded from consideration.

In auctions without a reserve price, λ∗
r=0 is independent of what happens on the seller side

because πr=0
B is independent of v0, so the entry equilibrium is defined by a simple zero profit

condition. Specifically, the expected bidder surplus from entering the platform into an auction

without a reserve price, when the mean number of bidders equals λr=0, is given by

ΠB,r=0

(
λr=0

)
≡

∑
n∈Z+

πr=0
B (n)fNr=0(n;λr=0)− eB.(8)

With πB(n) strictly decreasing in n and fNr=0(n;λr=0) increasing in a first-order stochastic

dominance sense in λr=0, the equilibrium mean number of bidders per listing in zero reserve

price auctions (λ∗
r=0) is the unique value of λr=0 ∈ R+ that solves

(9) ΠB,r=0

(
λ∗
r=0

)
= 0,

decreasing in eB and independent of the other fees.

The two-sidedness of the platform really manifests itself in positive reserve price auctions.

39By the environmental equivalence property of the Poisson distribution (Myerson (1998)), it is without loss to use the
same density function for the number of bidders n (that matter for sellers) and competing bidders n− 1 (that matter for
bidders).
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The equilibrium mean number of bidders per listing in those auctions (λ∗
r>0) responds to v∗0

because bidders expected surplus from entering the platform depends on the distribution of

reserve prices on the platform (i.e., because πr>0
B (n, v0) is decreasing in v0). To derive the entry

equilibrium for this case it is first documented that any candidate seller entry threshold ( ˜̃v0)

maps into an equilibrium mean number of bidders per listing λ∗
r>0( ˜̃v0). That mapping is used to

solve for the equilibrium seller entry threshold v∗0. It turns out that because λ∗
r>0( ˜̃v0) is strictly

decreasing in ˜̃v0, sellers’ best-response entry thresholds satisfy a single-crossing property so that

the entry game has a unique equilibrium despite its two-sidedness. These results are derived

below.

Two-sided entry: bidder side

The expected bidder surplus from entering the platform into an auction with a reserve price,

when the mean number of bidders equals λr>0 and given a candidate seller entry threshold ˜̃v0,

is given by

(10) ΠB,r>0

(
˜̃v0;λr>0

)
≡

∑
n∈Z+

[ ∫ ˜̃v0

vR0

πr>0
B (n, v0)

fV0(v0)

FV0( ˜̃v0)− FV0(v
R
0 )

dv0

]
︸ ︷︷ ︸

E

[
πr>0
B (n+1,c,V0)

∣∣V0∈[vR0 , ˜̃v0]

]
fNr>0(n;λr>0)− eB.

Besides the platform fees and listing inspection costs, ΠB,r>0

(
˜̃v0;λr>0

)
is made up of the listing-

level surplus πr>0
B (n, v0) in expectation over 1) seller-values V0 given candidate threshold ˜̃v0, and

2) the Poisson-distributed number of competing bidders. For any candidate seller entry thresh-

old ˜̃v0, the equilibrium mean number of bidders per listing in positive reserve price auctions

(λ∗
r>0( ˜̃v0)) is the unique value of λr>0 ∈ R+ that solves

(11) ΠB,r>0

(
˜̃v0;λr>0

)
= 0,

decreasing cB, cS , and eB, given ˜̃v0. As in the case without reserve prices, the uniqueness of

λ∗
r>0( ˜̃v0) follows from ΠB(n, v0) strictly decreasing in n and λ (the latter due to fNr>0(n;λr>0)
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increasing in a first-order stochastic dominance sense in λr>0). Moreover, it is crucial to note

that ˜̃v0 affects ΠB,r=0

(
˜̃v0;λr=0

)
only through the distribution of reserve prices. A higher ˜̃v0

draws in sellers with higher values that set higher reserve prices, resulting in a lower expected

bidder surplus,

E
[
πr>0
B (n, V0)

∣∣V0 ∈ [vR0 , ˜̃v0]

]
,

for any number of bidders n in the listing, and thus requiring the entry of fewer bidders to break

even in expectation. The zero profit condition in (11) therefore dictates that λ∗
r>0( ˜̃v0) strictly

decreases in ˜̃v0. This property is central to the equilibrium uniqueness result on the seller side,

as derived below.

Two-sided entry: seller side

The equilibrium entry strategy on the seller side is a threshold strategy, characterized by the

value v∗0 that gives a seller with V0 = v∗0 zero expected profit from entering when competing

sellers enter the platform i.f.f V0 ≤ v∗0.
40 The expected surplus for a seller with V0 = v0

from entering the platform when competing sellers adopt the threshold ˜̃v0, and given bidders

equilibrium best-response to this threshold (λ∗
r>0( ˜̃v0)), is given by

(12) ΠS,r>0

(
v0;λ

∗
r>0( ˜̃v0)

)
≡

∑
n∈Z+

πr>0
S (n, v0)fNr>0(n;λ

∗
r>0( ˜̃v0))− cL − eS .

The equilibrium entry threshold (v∗) is the unique value of ˜̃v0 ∈ [v0, v0] that solves

ΠS,r>0

(
˜̃v0;λ

∗
r>0( ˜̃v0)

)
= 0,(13)

with λ∗
r>0( ˜̃v0) the unique value that solves (11). The proof requires three parts. First, sellers

have a unique best-response for any competing ˜̃v0, because ΠS,r>0(v0;λ
∗
r>0( ˜̃v0)) strictly decreases

in sellers’ own v0. Second, this best-response function is strictly decreasing in competing sellers’

entry threshold, because of the effect that a higher ˜̃v0 has on lowering λ∗
r>0, and because ˜̃v0

40The strategy is denoted by the threshold itself. As with all equilibrium objects, the dependence of v∗0 on the platform

fees is omitted from the notation. In the empirical analysis only fee structures for which v0 < vR0 < v∗0 < v0 are considered.
The uniqueness result derived below is illustrated graphically in Online Appendix A.
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does not affect ΠS,r>0

(
v0;λ

∗
r>0( ˜̃v0)

)
in other ways. Symmetry then delivers a unique equilibrium

threshold, v∗0, which is the fixed point in seller value space solving (13) i.e., making the marginal

seller indifferent between entering and staying out. Moreover, v∗0 is strictly decreasing in cB,

cS , cL, and eS , as they all lower the expected surplus from entering for a seller with V0 ≥ vR0 .

Corollary. The entry equilibrium of the auction platform game presented in Section 3.A exists

and is unique. It is characterized by the set:

 v∗0, λ∗
r>0(v

∗
0), λ∗

r=0

Seller entry threshold Mean bidders r > 0 Mean bidders r = 0


The values of v∗0, λ

∗
r>0(v

∗
0), and λ∗

r=0 solve the zero profit conditions of the marginal seller and

potential bidders as defined in equations (13), (11), and (9).

Remark 1. Network effects are nonlinear in this model and, following, e.g., Katz and Shapiro

(1985), are defined by how much expected surplus from entering the platform changes if an

additional user on the other or own side enters exogenously. Because bidders are uncertain

about the height of the reserve price that they will face upon entering, and because excluding

high reserve price setting sellers (“lemons”) results in a more favorable reserve price distribution

on the platform, in turn encouraging bidder entry, this justifies the labeling of the negative

seller-side direct network effect as a lemons effect after Akerlof (1970).

The lemons effect does not exist in the zero reserve price benchmark. The same holds for

positive reserve price auctions as long as the seller type distribution (i.e., the reserve price

distribution) is held fixed, which occurs in the model when the platform’s fee structure does

not change so that v∗0 remains constant. For those cases, the model predicts that the average

number of bidders per listing is independent of the number of listings. Bidders will enter to the

point of depleting the additional surplus generated by the additional listings, and as there is no

change in the reserve price distribution the resulting distribution of the number of bidders per

listing will remain the same. There are no scale effects in this setting.41

41These model predictions are summarized in Table B. 3 in the online appendix. The model prediction of constant
returns to scale conditional on the seller type distribution can be verified with data from the empirical application, where
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Remark 2. The uniqueness of the entry equilibrium relies crucially on the mean number

of bidders decreasing in the seller entry threshold. The model applies directly to other two-

sided markets where user selection creates a negative own-side network effect.42 Likewise, a

model extension with a match value (as in Deltas and Jeitschko (2007)), where the probability

that a bidder finds a suitable item increases in the number of listings, can still result in a

unique equilibrium as long as the seller selection effect dominates so that each additional listing

generates a lower additional expected surplus for potential bidders.

Remark 3. Additional negative seller-side externalities, such as modeled by Belleflamme and

Toulemonde (2009) or arising from price competition intensifying in the number of competing

listings as in Karle, Peitz, and Reisinger (2020), would also fit the framework, as they would

result in a more steeply downward-sloping best-response function than in the presented model.

Moreover, when bidders learn their valuation before entering (as in e.g., Samuelson (1985) and

Menezes and Monteiro (2000)), the seller best-response function remains downward-sloping —

although at a shallower slope.43 By extension, an auction platform model where bidders decide

to enter based on a somewhat informative signal of their valuation (as in e.g., Gentry and Li

(2014) and Roberts and Sweeting (2013)) also results in a unique two-sided entry equilibrium.

By contrast, the model’s equilibrium uniqueness does not apply in two-sided markets with a

strong positive scale effect.44

4. Empirical strategies to recover model primitives

This section discusses the identification and estimation of model primitives (most importantly:

valuation distributions and latent entry costs) given the assumptions of the model outlined in

the fee structure is held fixed over the period under consideration. The regression results reported in Table B. 4 in the
online appendix confirm that the mean number of bidders per listing does not vary with the total number of listings of that
product, supporting the absence of a scale effect in the data. It reflects that, in the context of unvetted listings of vintage
wines, bidders need to inspect each listing’s many product idiosyncrasies before knowing how much to value the wine.

42For instance, in credit markets such as Prosper.com (see Kawai, Onishi, and Uetake (2022), Liu, Wei, and Xiao (2020),
and Freedman and Jin (2017)), borrowers have private information about their creditworthiness and do not internalize the
impact of their entry decisions on other platform users. As such, the selection of borrowers with lower creditworthiness is
expected to decrease the equilibrium lender/borrower ratio as the market grows.

43A full analysis of the case with selective bidder entry is provided in Online Appendix E.
44The seller best-response function is not downward-sloping when additional listings increase the expected bidder surplus

from each listing beyond the potential decrease in the surplus from the selection of higher-valuation sellers. For instance,
game consoles (studied in e.g., Lee (2013)) increase in value to consumers when more games are compatible with them.
Ride-hailing services (e.g., Rosaia (2020)) are more attractive to both riders and drivers when there are more total users on
the other side, at least until congestion costs outweigh economies of density. Jullien, Pavan, and Rysman (2021) provide
more examples of two-sided markets with positive scale effects.
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Section 3 and given observables, which include the number of bidders, the hammer price, the

reserve price, and the platform’s fee structure. Specifically, the model restricts that the actual

number of bidders observed in zero reserve price auctions is equal to the number of bidders

that entered into the listing (Nr=0 with realization n). In positive reserve price auctions, the

number of bidders that entered (Nr>0) is allowed to be larger than the number of actual bidders

that are observed (Ar>0), motivated by some unspecified degree of censoring associated with

information revealed when the standing price is below the reserve price (e.g., the “reserve not

met” and “reserve almost met” messages). The hammer price (the standing price when the

auction closes, irrespective of whether the item is sold) equals the second-highest bid (Bn−1:n)

in auctions without a reserve price when n ≥ 2.45

A. Nonparametric identification

The distribution of bidder valuations FV is identified from the hammer price and the number

of bidders in auctions with r = 0 and n ≥ 2, which follows directly from Athey and Haile (2002,

Theorem 1). In those auctions, the hammer price equals the second-highest (equilibrium) bid,

which relates to the second-highest value according to (2), so that in the data where cB = 0

the two are identical. This gives the distribution of the second-highest valuation. Then, FV is

obtained by inverting the known relationship between this distribution, e.g. the distribution of

the second-highest out of n i.i.d. draws from FV , and FV itself, where n denotes a realization

of the random variable Nr=0. Specifically, the distribution of the second-highest valuation

(FVn−1:n) satisfies ∀v ∈ [v, v] and n ≥ 2

(14) FVn−1:n(v) = n(n− 1)

∫ v

v
FV (u)

n−2[1− FV (u)]du,

45A complete characterization of the hammer price H in this model where the reserve price r is secret, with r ≥ 0, as
a function of the number of bidders allocated to the auction (n) and their bids and values, when the opening bid is set at
£1, is given below. The model implications regarding the observed actual number of bidders, a, given the conditions on r
and n, is given in the final column.

H =



1 r = 0 n ≤ 1 a = n
Bn−1:n = Vn−1:n r = 0 n ≥ 2 a = n
1 r > 0 n = 0 a = 0
Bn:n = Vn:n r > 0 n ≥ 1 Vn:n < r (unsold) a ≤ n
r r > 0 n = 1 Vn:n ≥ r (sold) a ≤ 1
max(Bn−1:n = Vn−1:n, r) r > 0 n ≥ 2 Vn:n ≥ r (sold) a ≤ n
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so that inverting this relationship separately for each n identifies FV . This is the standard

identification argument based on order statistics that is applicable to symmetric IPV ascending

auctions.46

Next, consider the identification of the distribution of seller values. We focus on the part

of the support of V0 ∈ [vR0 , v
∗
0] for v∗0 played in the data, because, under the restriction that

vR0 is exogenous, the part of the support of V0 < vR0 is irrelevant in counterfactuals where at

least one seller finds it profitable to enter and set a positive reserve price. Moreover, without

strong entry shifters to vary v∗0, the population distribution is not nonparametrically identified

for V0 > v∗0.
47 Assuming that sellers play the equilibrium reserve price strategy, each reserve

price maps to that seller’s value, as can be seen by rearranging (3) to

(15) v0(r) = (1− cS)

(
r − 1− FV (r(1 + cB))

(1 + cB)fV (r(1 + cB))

)
,

where, v0(r) denotes the seller valuation implied by reserve price r. v0(r) is known as FV (and

hence fV ) is identified and the other elements on the right-hand side of (15) are observed. As

such, the distribution of implied seller values, Fv0(r), is equal to the distribution of seller values

conditional on entering and setting a positive reserve price. In particular, ∀v0 ∈ [vR0 , v
∗
0]

(16) Fv0(r)(v0) =
FV0≥vR0

(v0)

FV0≥vR0
(v∗0)

.

The values of vR0 and v∗0 are identified as the minimum and maximum seller values implied by

(15). Given the identification of FV and observing all platform fees in c, the entry costs eS

and eB are identified from the zero profit conditions that govern platform users’ entry decisions

46Hence, in line with the literature standard regarding analysis of ascending auction data, the identification proof
relies on the absence of unobserved heterogeneity conditional on the set of observed auction-level characteristics. New
identification methods for a bidding model with unobserved heterogeneity could be applied to settings where additional
data is available to the econometrician. These methods rely for instance on exogenous shifters in bidder participation
(Hernández, Quint, and Turansick (2020)) or the observation of multiple bid order statistics (e.g. Freyberger and Larsen
(2022), Luo and Xiao (2023)). These more stringent data requirements are not met in the empirical application presented
in this paper. Moreover, it is shown that the rich set of auction observables explains a remarkably large share of the
variation in second-highest bids, minimizing the potential impact of unobserved heterogeneity. Also relevant to mention
in this context is that Roberts (2013) uses variation in reserve prices to control for unobserved heterogeneity but require
sellers to be homogeneous.

47The counterfactuals show that V0 ∈ [vR0 , v∗0 ] is the relevant part of the support in our empirical context, where
the lemons effect appears important enough to justify modifying the fee structure to exclude more high-v0 sellers on the
platform, rather than decreasing fees to encourage more sellers to enter.
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(e.g., (11), (9), and (13)). This follows from ΠB,r>0, ΠB,r=0, and ΠS,r>0 being revealed in the

data at equilibrium up to —and strictly decreasing in— the relevant entry costs. In particular,

the value of the seller entry costs, eS , is identified as the value that sets

(17) ΠS,r>0(v
∗
0;λ

∗
r>0(v

∗
0)) = 0.

The bidder listing inspection costs eB are equal to the value that either sets

(18) ΠB,r=0(λ
∗
r=0) = 0

or that sets

(19) ΠB,r>0(v
∗
0;λ

∗
r>0) = 0

so that eB is overidentified.48 As (potential) bidders might be censored in auctions with a

positive reserve price, the zero profit conditions in (17) and (19) rely on the entry equilibrium.49

As mentioned, v∗0 is revealed as the maximum of seller values implied by (15). λ∗
r>0 is recovered

as the value that maximizes the likelihood of the sample of observed second-highest bids and the

number of bidders in positive reserve price auctions, given FV . This likelihood also depends on

an additional parameter (p0,r>0) introduced below to allow for any unexplained variation in the

entry process causing relatively many zero reserve price listings to have no bidders. The value

of p0,r>0 is identified given the parametric restrictions of the generalized Poisson distribution,

as best fitting the observed variation in the number of actual bidders into a lower-dimensional

(two, together with the λ∗
r>0 played in the data) parameter space.

48The model assumes eB to be the same in auctions with and without a reserve price as the costs of inspecting a listing
are not expected to differ between these two listing types. The fact that eB can be identified using either subset exploits
a degree of freedom in the data and allows for validating this assertion empirically.

49Instead, with the number of bidders (Nr=0) observed and FV identified, the expected bidder surplus in zero reserve
auctions in (18) is simply the average of the expected listing-level surplus in (5).
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B. Estimation method

The strategies to estimate the model primitives closely follow their respective nonparamet-

ric identification arguments. However, to extrapolate beyond the support on which FV0≥vR0
is

identified, and to estimate FV independent of the number of bidders, the latent value distri-

butions are parameterized. In addition, the estimation of the distributions of the bidder and

seller values is based on data from auctions of heterogeneous items, so the value homogenization

step introduced in Haile, Hong, and Shum (2003) is applied to account for observed auction

heterogeneity. Further details are given below.

Estimation of the distribution of bidder values

The parameters of the distribution of bidder values (denoted by θb) are obtained using max-

imum likelihood estimation in line with previous analyses of ascending auction data. First,

to pool across auctions with different observed characteristics (denoted by the vector Z), the

quality of the item in auction t is specified as50

(20) qt = eg(zt),

with g(.) a linear additive function and imposing that E[g(zt)] = 0 so that g(zt) measures the

quality of the item in auction t relative to the average quality of items on the platform. It

follows from Section 4.A (with cB = 0 in the data) that

(21) log
(
Ht

)
= g(zt) + ϵt(nt)

with ϵt(nt) ⊥ g(zt), for all t where nt ≥ 2 and Ht ̸= rt (this set of auctions is denoted by Tq).51

Accordingly, ĝ(zt) is obtained by regressing the log of the hammer price on Z and dummies for

the number of bidders (denoted by d(nt)) for all auctions in Tq.

50In the empirical application, auctions are classified according to a binary type τ = {τ1, τ2} (being in the main vs.
high-end sample) and all model primitives (including gτ () and F τ

V ) can vary across τ . The dependence on τ is omitted
from notation but two sets of estimation results are presented.

51The homogenization argument is usually applied only to auctions without a reserve price, in which case log(Ht) =
logBnt−1:nt = g(zt)+ log(Vnt−1:nt ), but it also applies to auctions with secret reserve prices as long as the hammer price
is not equal to the reserve price (as shown in Online Appendix A).
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In all observations with a zero reserve price, the residuals of this regression (plus the nt-specific

intercepts d(nt)) deliver the (logarithm of the) homogenized second-highest values Vn−1:n. These

are used to estimate the distribution of FV by MLE, deriving the likelihood function from the

relationship between FVn−1:n and FV given in (14).

Estimation of the distribution of seller values

Estimating the parameters of the distribution of seller values (denoted by θs) is more com-

plex as they depend on v∗0 that itself is a function of θs. A second issue stems from v∗0 being

the solution to a fixed point problem with a nested threshold-crossing problem ((13)), making

full maximum likelihood estimation (computationally) infeasible. The following solution is pro-

posed. First, an initial estimate θ̂0s is obtained by maximum concentrated likelihood estimation

using the mapping of equilibrium reserve prices to homogenized seller values and a consistent

estimate of v∗0. Then, the entry equilibrium is solved given θ̂0s and θ̂b. Finally, seller parameters

are re-estimated using the resulting equilibrium v∗0. The steps are detailed below.

Let Tr>0 denote the set of auctions with positive reserve prices. Using the mapping between

the reserve price (rt) and seller’s valuations from (15) and accounting for auction heterogeneity

according to (20), the homogenized seller value in auction t equals:52

v̂0t =
(1− cS)

eĝ(zt)

(
rt −

1− FV (
rt

eĝ(zt)
; θ̂b)

1
eĝ(zt)

fV (
rt

eĝ(zt)
; θ̂b)

)
(22)

∀t ∈ Tr>0 and when cB = 0 as in the data. The density of implied seller values given entry

threshold v∗0, rt, and zt equals, ∀t ∈ Tr>0
53

h(v̂0t|v∗0, rt, zt; θs) =
fV0≥vR0

(v̂0t; θs)

FV0≥vR0
(v∗0; θs)

.(23)

Using this density, we get an initial estimate of the seller taste parameters (θ̂0s), by maximizing

the resulting likelihood function concentrated at a consistent initial estimate of the seller entry

52The reserve price for the case with general q and generic FV is derived in the online appendix, see equation (A.9).
53The no-reserve screening value that determines the lower bound on the support is simply v̂R0 = min({v̂0,t}t∈Tr>0

).
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threshold; υ̂Tr>0 = max({v̂0,t}t∈Tr>0):
54

L
(
θs; {v̂0,t, rt, zt}t∈Tr>0 , υ̂Tr>0) =

∑
t∈Tr>0

ln(h(v̂0t|v∗0 = υ̂Tr>0 , rt, zt; θs)
)

(24)

θ̂0s = argmaxL
(
θs; {v̂0,t, rt, zt}t∈Tr>0 , υ̂Tr>0

)
(25)

The next step is to compute the entry equilibrium using the estimated taste parameters (θ̂b,

θ̂0s) to determine the value at which a seller is indifferent between entering and staying out

of the platform. Then, the updated seller parameters are obtained by plugging the resulting

equilibrium entry threshold into (25). This is done in an iterated fashion until convergence in

the entry probability, meaning that for k = 1, . . .

θ̂ks = argmaxL(θs; {v̂0,t, rt, zt}t∈Tr>0 , v
∗k
0 (θ̂k−1

s )).(26)

As the expected seller surplus and the equilibrium v∗0 are functions of the latent entry costs,

the estimation algorithm is detailed further at the end of this section. The described estimator

resembles the Aguirregabiria and Mira (2002, 2007) nested pseudo-likelihood (NPL) estimator,

albeit with a nested concentrated likelihood estimator derived from the optimal reserve price

strategy to recover structural parameters.55

Parameterization of valuation distributions

The parameterization of the valuation distributions is based on an initial assessment of the

empirical CDF of V , which can be estimated nonparametrically for each number of bidders

n ≥ 2, and the empirical CDF of V0, which can be estimated nonparametrically on the observed

part of its support. The distributions appear unimodal and continuous but not symmetric,

and the Generalized Gaussian Distribution (GGD) appears suitable to capture the variation in

54υ̂Tr>0 is a consistent initial estimate of v∗0 with υ̂Tr>0 → v∗0 as Tr>0 → ∞ at the true population parameters, by the
law of large numbers, asymptotically over multiple iterations of the game.

55NPL is used as a solution to solving parameters involving fixed point characterizations in the estimation of (dynamic)
discrete choice entry games, and Roberts and Sweeting (2010) previously applied the NPL estimator to an auction setting
with bidder entry. In my model, the entry game reduces to a single agent (marginal seller) discrete choice problem with a
unique equilibrium, satisfying the stability condition for convergence of the estimator in theory (Pesendorfer and Schmidt-
Dengler (2010), Kasahara and Shimotsu (2012)). Egesdal, Lai, and Su (2015) and Aguirregabiria and Marcoux (2021) show
that convergence in small samples from stable processes is not guaranteed. In my data, the estimator converges within a
few iterations, but it does not converge in all bootstrap samples used for inference. See also the footnote of Table 5.
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log values (see plots a and b in Figure 1). The estimation results are therefore based on the

following parameterization:

V ∼ log GGD(µb, σ
2
b , κb)(27)

V0|V0 ≥ vR0 ∼ log GGD(µs, σ
2
s , κs).(28)

The log GGD distribution allows for additional flexibility relative to the often-imposed log-

normal distribution, with values of κ > 0 (κ < 0) introducing skewness to the left (right).

Estimation of entry parameters and algorithm

Estimation of the entry costs requires solving for the values that satisfy the zero profit con-

ditions in (17), (18), and (19) given the estimated taste parameters and the computed entry

equilibrium, following the steps outlined in the identification section. The bidder listing inspec-

tion costs are estimated separately from the subsets of auctions with and without a reserve price

(resulting in êB,r>0 and êB,r=0) to verify the assertion that the two are equal. The additional

share (p0,r>0 ≥ 0) of listings in positive reserve price auctions attracts zero bidders is estimated

to maximize the joint likelihood of the observed number of actual bidders and the second-highest

bid given the generalized Poisson distribution of Nr>0. The empirical distribution of the number

of bidders in zero reserve auctions, which can be estimated nonparametrically, shows that no

such flexibility is needed there (see plot f in Figure 1).

It should be noted that êS and θ̂s are determined jointly, as eS is the amount that makes the

marginal seller indifferent and the marginal seller is defined depending on how costly it is to

enter. To address this, the estimation approach starts from an initial guess of the seller entry

costs (ê0S) and the initial θ̂0S (defined in (25)) and then updates both the equilibrium seller entry

threshold and the seller valuation parameters iteratively. The pseudo-code of these steps is as

follows. After obtaining ê0S and θ̂0S , for each iteration k = 1, . . . :

• solve for the unique v∗k0 (θ̂k−1
s , êk−1

S ) and the associated λ∗k
r>0 (equation 13)

• estimate θ̂ks (v
∗k
0 ) by maximum concentrated likelihood (equation 26),
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• solve for the êkS = e∗S(v
∗k
0 , θ̂ks , λ

∗k
r>0) satisfying the zero profit entry condition (equation 17),

and iterate on these steps until convergence, omitting from the notation above any parameters

that remain fixed throughout.56

5. Estimation results

This section describes the estimation results that are reported in Table 5. Unless otherwise

noted, the discussion in this section refers to the estimates from the main estimation sample

that are of primary interest.

A. Parameter estimates and model validation

The data contain information on observables related to the type of wine, the region of origin,

the number and type of bottles, the auction month, storage in a temperature-controlled ware-

house, delivery cost/conditions, returns and insurance, payment options, seller ratings, ullage,

in-bond lot status, and more, as collectively denoted by Z in Section 4.B. Obtaining the data

by scraping the content of the listing pages results in an unusually rich dataset that contains

much of what bidders also observe. To fully exploit this information, text mining techniques are

applied to the wine’s description. Words are identified that relate to the expert opinion of wine

critics Robert Parker or Janice Robinson, the wine being bought en primeur, and the delivery

or shipment of the wine.57 Whether the description contains words in each of these categories

and the number of words in the description are included in the set of auction covariates.

The observables explain a strikingly large share of the price variation.58 In the main sample

56Following Dearing and Blevins (2023) and Aguirregabiria and Mira (2007), the algorithm has converged when

(29)
∣∣∣∣(θ̂kS − θ̂k−1

S , êkS − êk−1
S , P̂k − P̂k−1

)∣∣∣∣
∞

is less than 10−2/4 (given 4 parameters, or when k = 100), and with P̂ indicating the estimated seller entry probability

(30) P̂k = FV0|V0≥vR
0

(
v∗k0 (θ̂k−1

S ); θ̂k−1
S

)
.

Further details about the computation of the entry equilibrium and estimation of the entry parameters are provided in
online appendices F-I.

57For example, words related to expert opinion include “advocate”, “points”, “color”, and “tannin” (related to the
wine’s taste), words related to en primeur status include “temperature”, “member”, “facility”, and “society” (related to
the wine’s provenance and the professionalism of the seller), and words related to delivery and storage include “insurance”,
“arrange”, “quote”, “wales”, and “invoice”. En primeur is French for “in advance” or “first” and indicates the practice of
buying Bordeaux wines on the basis of young barrel samples (before the wine has been bottled and matured).

58Column 1 in Tables H. 1-H. 2 in the online appendix report estimation results from these regressions for the main
sample and high-end sample, respectively. They also provide a comparison with alternative specifications; estimated on
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Table 5—: Estimated structural parameters

Valuation distributions µ̂b σ̂2
b κ̂b µ̂s σ̂2

s κ̂s

Main sample
est. 2.420 0.878 0.013 2.624 0.782 0.112
s.e. (0.025) (0.004) (0.004) (0.029) (0.010) (0.006)

High-end sample
est. 5.316 0.338 -0.465 5.495 0.359 -0.078
s.e. (0.032) (0.003) (0.011) (0.034) (0.018) (0.019)

Entry parameters êB,r>0 êB,r=0 êS p̂0,r>0 v̂R0

Main sample
est. 1.831 2.283 2.277 0.049 0.345
s.e. (0.230) (0.211) (0.217) (0.001) (0.033)

High-end sample
est. 13.782 14.493 14.463 0.115 4.705
s.e. (0.587) (0.653) (0.678) (0.004) (0.034)

Notes. The parameters in the top panel describe the location (µ), scale (σ2), and shape (κ) of GGD-distributed
log-values. The table reports point estimates (est.) and standard errors based on 250 nonparametric bootstrap
repetitions (s.e.). Estimation of θs excludes the 8.3 percent percent of sellers (3.7 in the high-end sample)
for which v̂0t is estimated to be negative. Both v̂0,t and ĝ(Z) are trimmed at their 1st and 99th percentiles
to minimize the impact of outliers; before trimming the estimation sample has 2,787 observations (618 in the
high-end sample). Moreover, the standard errors are based on draws that generate a stable equilibrium, thereby
excluding 7 draws (46 from the smaller high-end sample) where the estimator did not converge. See Egesdal, Lai,
and Su (2015) and Aguirregabiria and Marcoux (2021) on the issue of non-convergence of the NPL estimator in
small samples based on stable data generating processes.

the R2 is 0.55, and in the high-end sample the R2 is 0.91. These results compare favorably

to the amount of price variation that can typically be explained in auction studies, including

in studies of more homogeneous goods and using innovative methods to recover information

otherwise unobservable to the econometrician (see, e.g., Bodoh-Creed, Boehnke, and Hickman

(2017) and Kong (2020)). As such, unobserved heterogeneity likely plays a minor role in the

current context. In addition, the impact of key variables is as expected. Prices are higher for

bottles sold by the case and conditional on this case effect, the price is lower when more bottles

are included in the lot. All fill levels that are not the best earn (weakly) lower prices. Having

words related to expert opinion or en primeur in the description, or having a longer description,

is favorable for the price, as is fast shipping.

Table 5 reports the remaining estimated structural parameters. The estimated taste distribu-

tion parameters imply that, on average, tastes in the populations of potential bidders and sellers

(for positive reserve price auctions) are very similar; in levels, the mean idiosyncratic value is

about £11 for bidders and £13 for sellers in the main sample. The sunk opportunity costs of

the sample with zero reserve prices only (column 2), excluding dummies for the number of bidders (column 3), based on
the level (rather than the log) of the hammer price (column 4), and excluding all seller and shipping-related variables from
Z (column 5).
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(a) FV (b) FV0≥vR0
(c) Second-highest bid

(d) Reserve price (e) Hammer price (f) fNr=0

Figure 1. : Model fit: main sample

Notes. Model predictions and observed values of (a) FV , and empirical CDF for n = 2, ..., 11 bidders (r = 0
auctions), (b) FV0 , and empirical CDF (r > 0 auctions), (c) Second-highest bid (r = 0 auctions), (d) Reserve
price (prediction includes estimated quality, r > 0 auctions), (e) Hammer price (prediction includes estimated
quality, r > 0 auctions), and (f) Number of bidders per listing (r = 0 auctions). Simulations of bidder values
based on 1,000 draws for each bidder and simulations of seller values based on 5,000 draws. Observed values are
based on the estimation sample.

time and the platform listing fee work to keep sellers with the highest values (marginal costs

of selling) away from the platform. The average idiosyncratic value for sellers on the platform

reduces to £11 as well. Additional gains from trading on the platform are generated from the

fact that only the highest-value bidder in the listing trades with the seller when bidding more

than the reserve price. The estimation results also show that, even in the population of sellers

with values exceeding v̂R0 , the distribution of their idiosyncratic tastes is more left-skewed than

that of bidders. In the high-end sample, both distributions are right-skewed with especially

some bidders having particularly high values.

The estimated scaled listing inspection costs are £2 for each unit of quality in the main sample

and £14 in the high-end sample (for both r = 0 and r > 0 listings, see Table 5). In relative

terms, the median unscaled listing inspection costs as a share of the hammer price per bottle are

7-8 percent for auctions in the main sample and 5 percent in the high-end sample. Estimates do
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in both cases correspond to the idea that the costs of inspecting a listing to prepare for bidding

are significant, justified by the heterogeneous nature of the goods and by a platform setting

of unvetted listings generated by individual sellers.59 Obtaining similar êB,r=0 and êB,r>0 in

both samples also provides a key source of model validation, confirming that the presence of

a reserve price does not affect how time intensive it is to inspect listings (of a certain quality

level) as it does not reveal any information about the quality of the item. Moreover, these

costs are estimated from two different subsets of the data as the values that satisfy the zero

profit conditions of potential bidders in zero- and positive reserve price auctions, using different

estimation methods. The opportunity costs of time for sellers are estimated to be similar, too,

indicating that it takes about the same time for sellers to provide the detailed item description

as it takes for bidders to inspect and bid.

The model also fits the data well on the usual dimensions, as illustrated by the various plots

in Figure 1. It is particularly convincing that predicted hammer prices in positive reserve

price auctions match the observed values closely —given that the distribution of bidder values

is estimated from the disjoint subset of auctions with no reserve price. This finding lends

further support to the idea that bidders in positive and zero reserve auctions can be treated

as identical up to their preference for bidding in either auction type. The mean absolute

deviation between the observed and predicted second-highest bids in zero reserve price auctions

is computed separately for n = {2, 3.., 10} bidders: the mean absolute deviations are small and

there is no clear pattern by the number of bidders. Furthermore, a two-sample Kolmogorov–

Smirnov test cannot reject the null hypothesis that the observed and predicted reserve prices

are drawn from the same population distribution (p-value 0.25).

Plot f of Figure 1 displays the goodness of fit of the assumed Poisson distribution of the

number of bidders per listing, given the estimated level of λ∗
r=0 played in the data, relative to it’s

empirical distribution. Notably, the data do not reveal any substantial overdispersion relative

to the Poisson distribution. While preferences for high-level characteristics (filters) might vary

59By comparison, entry costs average 2 percent of the winning bid in USFS timber auctions (Roberts and Sweeting
(2013)).
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Table 6—: Estimated indirect network effects

Main sample High-end

Changing the number of sellers (Tr>0) by -50 -10 +10 +50 -50 +50

Effect on ΠB,r>0 (selection) -0.015 -0.002 0.002 0.009 -0.446 0.597
Effect on ΠB,r>0 (no selection) -0.034 -0.007 0.007 0.034 -0.741 0.688

Main sample High-end

Changing the number of bidders (Mr>0) by -50 -10 +10 +50 -50 +50

Effect on ΠS,r>0 (marginal seller) -0.033 -0.007 0.007 0.033 -0.437 0.437
Effect on ΠS,r>0 (median seller) -0.057 -0.011 0.011 0.056 -1.343 1.335

Notes. Simulations are based on r > 0 homogenized auctions. In the main (high-end) sample, Tr>0 equals 1,586
(434), Mr>0 equals 8,137 (2,279), and the marginal seller has a valuation at the 84th (96th) percentile of the
estimated seller valuation distribution.

across the population of potential bidders, the uniform sorting over listings —conditional only

on the reserve price button— assumed in the estimation captures the first-order effects of entry

behavior in the BW data.60 The estimation results underscore the importance of accounting for

censoring in positive reserve price auctions, even when the reserve price is (partly) hidden. The

estimated baseline level of λ∗
r>0 played in the data equals 4.9, whereas an average of 2 actual

bidders are observed in these auctions.

Taken together, these results suggest that the parsimonious model presented in Section 3

provides a plausible description of behavior and payoffs on this platform.

B. Seller selection and indirect network effects

The impact of fee changes depends on the entry elasticities of potential bidders and sellers

and hence on the network effects generated by user interactions on the platform. This section

estimates their magnitudes on the BW platform as follows. First, homogenized auctions are

simulated by applying equilibrium strategies to the estimated parameters. Then I alter either

the total number of bidders (denoted by Mr>0) or sellers (denoted by Tr>0) in positive reserve

price auctions by various amounts. Marginal sellers are added (or removed) when accounting

for seller selection, and otherwise sellers are added or removed randomly. The expected bidder

and seller surplus are re-estimated after updating the mean number of bidders per listing to the

60A chi-squared goodness-of-fit test fails to reject the hypothesis that N is generated by a Poisson distribution, but
only marginally, with a p-value of 0.06.
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new λr>0 = Mr>0

Tr>0
. The results are reported in Table 6 for various exogenous changes to Mr>0

and Tr>0, and separately for the high-end sample.

Indirect network effects have the following magnitude: adding 10 additional bidders to the

platform increases the expected surplus of the marginal seller by £0.007, and this effect more

than twice as large as the effect of adding 10 additional sellers on the expected surplus of bidders.

One benefit of the structural analysis is that it relaxes the assumption that these network effects

are constant. The results display heterogeneity, as sellers with lower valuations for the item on

sale benefit more. Increasing the number of sellers also has a different effect on bidders than

decreasing the number of sellers.

These results are driven by the estimated bidder and seller valuation parameters, which impact

the importance of the seller selection channel. For example, a lower level of dispersion in seller

values would increase the indirect network effect of attracting additional sellers. The estimates

indicate that conditional value distributions are such that seller selection plays a significant role

on the BW platform. Relative to an environment where sellers are homogeneous, the gain from

adding 50 listings (the positive indirect network effect on bidders) is dampened by 74 percent

because sellers in these listings set relatively high reserve prices.

C. Commission index and revenue-volume trade-off

The model’s estimates shed light on two key market features. Firstly, it highlights the sig-

nificance of the “commission index,” denoted as α = cB+cS
1+cB

. Ginsburgh, Legros, and Sahuguet

(2010) demonstrate that expected platform revenue (and bidder and seller surplus) is inde-

pendent of (cB, cS) when α stays constant, which applies to the two-sided market setting as

well. Thus, only the commission index and flat fees affect the platform revenue-maximization

problem. Figure 2 (a) confirms that the simulated counterfactual platform revenue levels align

perfectly with the theoretical commission-index level lines (in orange). However, theory alone

cannot inform beyond the combinations of cB and cS that keep outcomes constant.

Secondly, the platform faces a trade-off between maximizing revenues and maximizing sales



ESTIMATING AN AUCTION PLATFORM GAME WITH TWO-SIDED ENTRY 37

(a) Platform revenue (b) Sales volume

Figure 2. : Illustrating the commission index and revenue-volume trade-off

Notes. Displaying two overlapping contour plots. The grey contour plot reflects, in panel (a) simulated platform
revenues normalized by baseline revenues, and in panel (b) the simulated volume of sales normalized by the
baseline volume of sales. The thick orange lines indicate combinations of cB and cS where the commission index
is either half as large as (level=0.5), equal to (level=1), or twice as large (level=2) as the baseline commission
index. The game is estimated on a grid of: cB × cS (cB = {−0.3,−0.2,−0.1, 0, 0.1}, cS = {−0.1, 0, 0.1, 0.2, 0.3})
and interpolated linearly. Simulations are based on parameter estimates from the main sample.

volume. Increasing fees reduces the sales volume but increases the share paid to the platform.

Even when the commission index remains constant, altering fees affects the sales volume. For

instance, increasing cB and decreasing cS such that α remains unchanged decreases volume as

bidders scale down bids, while the reserve price and sale probability remain unaffected (Gins-

burgh, Legros, and Sahuguet, 2010). Plot b of Figure 2 illustrates this, showing decreasing

simulated volume levels when moving up along the commission index level lines. Similarly,

raising the listing fee boosts revenue but diminishes sales volume by reducing platform listings.

Such fee structures that prioritize revenue over volume are typically considered unattractive,

particularly when volume impacts future revenues through factors like word of mouth or brand

awareness (Evans and Schmalensee, 2010). To address this, a nonparametric volume constraint

is reported alongside platform revenues.

6. Counterfactuals

I first use the model estimates illustrate the lemons effect of two-sided markets with seller

(listing) heterogeneity. To do so, I simulate the effect on sellers when the listing fee is increased
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(a) Only increasing listing fee (b) Adding bidder entry subsidy

Figure 3. : Lemons effect: heterogeneous change in expected seller surplus when increasing the
listing fee by £1.

Notes. The estimated effects are plotted by decile of FV0|V0≥vR
0
, for sellers who are infra-marginal (with v0 ∈

[vR0 , v∗0 ]) both at baseline and in the counterfactual. Simulations are based on r > 0 homogenized auctions in the
main sample.

by £1. In a model that ignores entry, the expected surplus for all sellers on the platform would

decrease by £1, and no other user groups would be affected. Instead, when the equilibrium is

recomputed with two-sided entry, the expected surplus for sellers who remain on the platform

decreases by less than £1. The higher listing fee excludes some of the highest-valuation (v0)

sellers from the platform, increasing the expected surplus for potential bidders and driving up

the number of bidders per listing. Figure 3 shows that the magnitude of the lemons effect is

inversely related to the infra-marginal seller’s value draw. The expected seller surplus reduces

by 22-40 percentage points less than when the two-sided entry is not taken into account. The

bias increases with the degree of seller heterogeneity in the market. To illustrate, the figure

includes results simulated after increasing the variance in the distribution of seller values (σ2
s)

by 40 percent (the line that is labelled “additional seller heterogeneity”).61

Furthermore, plot (b) of Figure 3 demonstrates that the network effects can be exploited

61Sellers who set no reserve price simply experience the full £1 loss in surplus, while the expected surplus of the 6
percent of sellers who are pushed out of the market must be lower in the counterfactual scenario.
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to make sellers better off despite paying a £1 higher listing fee, when using the proceeds to

subsidize bidder entry. The marginal seller remains indifferent when combining the £1 higher

listing fee with a £0.19 bidder subsidy. All infra-marginal sellers with V0 ∈ [vR0 , v
∗
0) are better

off; their expected surplus increases by up to £1.3. These results provide evidence for the

special circumstance in two-sided markets that (some) users could be better off when paying

higher fees. No intervention by a social planner is needed to bring about these benefits: the

fee change is estimated to increase both the sales volume and platform profits, driven by a

higher sale probability and higher transaction prices. To see this, an even higher bidder subsidy

of £0.23 would be budget neutral for the platform, depleting all additional platform revenues

raised through the higher listing fee.

In general, subsidizing user entry on the side that generates stronger positive externalities

proves profitable in two-sided markets (Rochet and Tirole (2006)). As bidders create stronger

indirect network effects than sellers on BW (see Table 6), the platform is right to set cB = 0

and change no bidder entry fee. The preceding section discussed the benefits of subsidizing

bidder entry, implementable by lowering listing inspection costs or offering cash back to winning

bidders. Here, I consider a negative buyer commission that gives winning bidders a percentage

discount on the sale price. Such a fee policy would be innovative in the auction platform sphere

but is akin to temporary discount vouchers on eBay or cash-back policies of credit cards.

To assess the impacts of fee changes on the composition of listings on the platform, the

following results include homogenized auctions based on parameter estimates from the high-end

sample. Figure 4 shows that a self-imposed non-negativity constraint on cB remains binding.

Platform revenues cannot increase by changing the allocation of commissions to buyers and

sellers unless buyers are subsidized through a negative cB. Paired with a larger increase in cS

(to finance the winning bidder discount), volume-constrained revenues rise by up to 40 percent.

Next, I use the model to simulate the impact of (anti-competitive) commission changes, as

this is closely tied to assumptions about entry and sellers’ pricing strategies. I compare the

results to two benchmark rules-of-thumb. In the first, based on theories posited by McAfee
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(1993), Ashenfelter and Graddy (2005), and Marks (2009), winning bidders remain unaffected

by changes in buyer or seller commissions. This can be shown to hold only in markets devoid of

entry barriers and with fully elastic sellers. In the second, based on common practice in antitrust

cases, damages are considered pro-rata. For instance, in the 2001 Sotheby’s and Christie’s

commission-fixing case, the pro-rata rule resulted in most of the $512 million settlement going

to winning bidders who were overcharged the most.62 The presented framework allows for precise

estimation of welfare impacts in platform antitrust cases without reliance on such simplistic rules

of thumb. This is demonstrated through a simulation doubling the commission index from 0.102

to 0.204, revealing biases in simpler models that overlook seller entry. Notably, in the auction

model with two-sided entry, only 60 percent of the incidence of seller commission increases falls

on sellers, deviating significantly from the expected 100 percent in both benchmark scenarios.

Furthermore, considering market entry increases the total welfare loss for sellers by 25 percent,

while buyers also incur a substantial welfare loss, contrary to assumptions in conventional

scenarios. These findings underscore the necessity for comprehensive modeling to accurately

assess the ramifications of fee adjustments.63

7. Conclusions

This paper studies an auction platform with two-sided entry. A structural model is presented

that captures user interactions on such a platform in order to study the welfare and revenue

impacts of the platform’s fee structure. A computationally feasible estimation algorithm is

provided, and it is shown that the relevant model primitives are nonparametrically identified

with basic auction data. The model is estimated with data from a wine auction platform —after

presenting reduced form evidence supporting the model assumptions— and is shown to fit the

data well.

Counterfactual simulations highlight that the network effects generated by entry and by user

62See Ashenfelter and Graddy (2005) and https://casetext.com/case/in-re-auction-houses-antitrust-litigation-61.
63The estimated welfare impacts capture the true economic impact of increased fees, including equilibrium effects from

changes in entry on the other side of the market. This is in line with the notion of antitrust damages in two-sided markets
since recent developments in US antitrust law (see footnote 1). The simulation results referenced in this paragraph are
presented in Table B. 5 in the online appendix.

https://casetext.com/case/in-re-auction-houses-antitrust-litigation-61
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Figure 4. : Platform revenue at alternative fee structures

Notes. Displaying a contour plot of simulated platform revenues normalized by baseline values, and indicating
the volume constraint where the simulated volume of sales is equal to the baseline volume. The grey vertical bar
corresponds to cS ∈ [0.9 (high-end), 0.102 (main sample)], the horizontal bar indicates the baseline cB = 0. The
game is estimated on a grid of: cB × cS (cB = {−0.3,−0.2,−0.1, 0, 0.1}, cS = {−0.1, 0, 0.1, 0.2, 0.3}), and values
are interpolated linearly. Results are based on parameter estimates from both main and high-end samples.

interactions are nonlinear, that the selection of sellers with higher valuations depletes much of

the indirect network effect on bidders, and that the benefit of additional bidder entry is lower

for higher-valuation sellers. What is termed a lemons effect clearly illustrates the role of seller

selection in this two-sided market. The reduction in surplus due to an increase in the listing fee

by one is, for sellers who remain on the platform, less than one as it causes some higher-valuation

sellers (e.g., lemons) to choose not to enter. Higher-valuation sellers set higher reserve prices,

and as the expected (latent) reserve price affects bidder entry, the number of bidders per listing

increases, which drives up transaction prices for the sellers remaining on the platform. This

effect increases with the degree of seller heterogeneity in the market. Furthermore, pairing the

listing fee increase with a budget-neutral bidder entry subsidy (weakly) increases the expected

surplus for all users on the platform, including for sellers, despite paying more to create a listing

on the platform. Moreover, platform revenues can be increased by pairing a bidder discount

(negative buyer commission) with higher seller fees.

The results highlight that the economic principles underlying regulations in traditional mar-

kets do not necessarily apply to two-sided markets and that both sides should be evaluated in
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tandem. An auction platform could combine high fees on one side of the market with below-

marginal cost prices on the other side. Both practices could be considered predatory when

evaluated in isolation, but they prove to be socially optimal in the two-sided market in this pa-

per. In recent years, competition authorities and courts have also recognized that the regulation

of platform markets requires new empirical models, but the perceived difficulty of quantifying

user interactions has been a bottleneck for the practical application of these ideas. While the

empirical results presented here are based on a specific platform, this paper provides the tools

necessary to make much-needed progress in applying antitrust policy to two-sided markets.
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A. Additional results

Optimal reserve price with fees

This section derives the optimal reserve price for sellers with V0 = v0. Hat and check notation

is defined as: x̂ = x(1 + cB) and x̌ = x
1+cB

. Let R denote expected revenue for a seller with

valuation v0 when setting reserve price r in an auction with n bidders. It equals

R = v0FV (r̂)
n + (1− cS)rnFV (r̂)

n−1[1− FV (r̂)]+(A.1)

(1− cS)

∫ v

r̂
x̌n(n− 1)FV (x)

n−2[1− FV (x)]fV (x)dx.

The three terms in the above equation cover three cases: i) no sale takes place, ii) a sale takes

place but the second-highest bid is less than the reserve price and iii) the sale takes place and

the second-highest bid exceeds the reserve. Maximizing R with respect to r gives

∂R

∂r
= v0nFV (r̂)

n−1fV (r̂)(1 + cB) + (1− cS)nFV (r̂)
n−1[1− FV (r̂)](A.2)

+(1− cS)rn(n− 1)FV (r̂)
n−2fV (r̂)(1 + cB)[1− FV (r̂)]

−(1− cS)rnFV (r̂)
n−1fV (r̂)(1 + cB)

−(1− cS)rn(n− 1)FV (r̂)
n−2[1− FV (r̂)]fV (r̂)(1 + cB).

The second and last lines cancel out. Re-arranging delivers the optimal reserve price r∗(v0),

which solves

r =
v0

1− cS
+

1− FV (r(1 + cB))

(1 + cB)fV (r(1 + cB))
.(A.3)

The optimal reserve price is unique ∀(v0, cB, cS) given IFR of FV , increasing in v0, independent

of n, increasing in cS , and decreasing in cB given IFR of FV .
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Optimal reserve price with fees and common quality term

Here, I consider the optimal reserve price for an item with quality q = eg(Z) valued equally by

buyers and sellers, when the seller has an idiosyncratic value of V0 = v0. As in the main text,

let bidder and seller values be given by

Ṽ = qV(A.4)

Ṽ0 = qV0,(A.5)

Hat and check notation is used as in the derivation above, x̂ = x(1 + cB) and x̌ = x
1+cB

. The

expected revenue for a seller with valuation v0 and an item with quality q when setting reserve

price r in an auction with n bidders is given by

R = qv0FṼ (r̂)
n + (1− cS)rnFṼ (r̂)

n−1[1− FṼ (r̂)]+(A.6)

(1− cS)

∫ v

r̂
x̌n(n− 1)FṼ (x)

n−2[1− FṼ (x)]fṼ (x)dx.

The following transformation makes the dependence on q explicit

FṼ (r̂) = P [Ṽ ≤ r̂] = P [qV ≤ r̂] = FV (
r̂

q
).(A.7)

Solving for r we get

∂R

∂r
= qv0nFV (

r̂

q
)n−1fV (

r̂

q
)(1 + cB)

1

q
+ (1− cS)nFV (

r̂

q
)n−1[1− FV (

r̂

q
)](A.8)

−(1− cS)rnFV (
r̂

q
)n−1fV (

r̂

q
)(1 + cB)

1

q
.

Setting this equation to zero and re-arranging, the optimal reserve price in the presence of a

common multiplicative quality term q solves

r =
qv0

1− cS
+

1− FV (
r(1+cB)

q )

1
q (1 + cB)fV (

r(1+cB)
q )

,(A.9)
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which can also be presented as

r

q
=

v0
1− cS

+
1− FV (

r
q (1 + cB))

(1 + cB)fV (
r
q (1 + cB))

.(A.10)

From here, we can see that the optimal reserve price in this specification is homogeneous of

degree one in q. Specifically, denoting the solution to (A.10) by r∗(q, v0), we can see that

r∗(αq, v0) = αr∗(q, v0). We get the reserve price in homogenized value space by setting q = 1.

Moreover, r∗(v0) is unique ∀v0 given IFR of FV , increasing in v0 and cS , decreasing in cB, and

independent of n.

Sale probability independent of q

The sale probability is independent of q when sellers set an optimal reserve price. This is

simply because P [Ṽ ≤ r̂∗] = FV (
r̂∗

q ), with r∗ the optimal reserve price that is homogeneous of

degree one in q, as established above, so we get FV (
αr̂∗

αq ) = FV (
r̂∗

q ). As a result, the mark-up in

the optimal reserve price is also independent of q.

Seller revenues homogeneous of degree one in q

With the sale probability being independent of q, we can also show that the expected seller

revenues are homogeneous of degree one in q. To see this, take the revenue function (A.6) and

denote terms that are obviously independent of q with Λi and Λii.

R(q, v0) = qv0 Fṽ(
r̂∗

q
)n︸ ︷︷ ︸

Λi

+r (1− cS)nFṽ(
r̂∗

q
)n−1[1− Fṽ(

r̂∗

q
)]︸ ︷︷ ︸

Λii

+(A.11)

(1− cS)

∫ v

r̂∗
qx̌n(n− 1)Fṽ(

x

q
)n−2[1− Fṽ(

x

q
)]fṽ(

x

q
)dx.

The second line represents the expected second-highest bidder valuation conditional on exceed-

ing r̂. We can write this as E[qvn−1:n|qvn−1:n ≥ r̂∗], and since P [qvn−1:n ≥ r̂∗] is independent

of q when r∗ is the optimal reserve price, the full revenue equation simplifies to

R(q, v0) = qv0Λi + r∗Λii + qΛiii,(A.12)
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where Λiii = (1 − cS)
∫ v
r̂∗ x̌n(n − 1)Fṽ(

x
q )

n−2[1 − Fṽ(
x
q )]fṽ(

x
q )dx. This proves that also R(q, v0)

is homogeneous of degree one in q, as

R(αq, v0) = αqv0Λi + αr∗Λii + αqΛiii = αR(q, v0).(A.13)

Seller surplus homogeneous of degree one in q

The expected seller surplus function as defined in (12) is equal to the expected revenue

function as defined in (A.6) minus the seller’s cost of selling the wine. Specifically, maintaining

that ṽ = qv and ṽ0 = qv0, and making the dependence on q and v0 explicit, we have that

(A.14) πS(v0, q) = R(q, v0)− qv0.

This shows that πS(v0, αq) = αR(q, v0)− αqv0 = απS(v0, q).

Optimal reserve price : non-common quality term

Here, I solve for the optimal reserve price when bidders and sellers have different appreciation

of the auction characteristics, assuming that a bidder’s (seller’s) valuation is equivalent to qBv

(qBv0). In this setting, the FṼ (r̂) depends on qB only, whereas the reserve price must be

increasing in qS to correspond to a higher seller valuation. The optimal reserve price, in the

presence of a multiplicative quality term that differs between bidders and sellers, solves:

r

qS
=

v0
1− cS

+
1− FV (

r
qB

(1 + cB))
qS
qB

(1 + cB)fV (
r
qB

(1 + cB))
.(A.15)

From here, we can see that when qB ̸= qS , the optimal reserve price is not homogenous of degree

one in either quality term. The mark-up is decreasing in qS
qB

.

Optimal reserve price : additive common quality term

Here, I solve for the optimal reserve price when bidders and sellers have the same appreciation

of the auction characteristics but this enters their valuations additively. Sticking to the same

notation as above, the assumption is that a bidder’s (seller’s) valuation is equivalent to q + v
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(q + v0). The optimal reserve price, in the presence of a common additive quality term, solves:

r =
v0 + q

1− cS
+

1− FV (r(1 + cB)− q)

(1 + cB)fV (r(1 + cB)− q)
.(A.16)

Only when there is no distortion from the commissions, i.e., in the case that cB = cS = 0, is

the optimal reserve price homogeneous of degree one in q, as then we can rewrite (A.16) as

r − q = v0 +
1− FV (r − q)

fV (r − q)
.(A.17)

.

Poisson decomposition property for number of bidders per listing

The proof concerns the statement that when NB potential bidders enter a platform with T

listings with probability p, the distribution of the number of bidders per listing is approximately

Poisson with mean NBp
T . Let M denote the total number of bidders on the platform, distributed

Binomial(NBp,NBp(1− p)). The limiting distribution of M when the population of potential

bidders NB → ∞ and associated p → 0 s.t. NBp remains constant is Poisson(λ = NBp).

Bidders on the platform sort over T listings, entering each listing with probability q = 1
T . Due

to the stochastic number of bidders on the platform, the probability thatm bidders get allocated

in listing t and n enter into other listings also includes the probability that m+n bidders enter

the platform.

(A.18) fNt,N−t(m,n) =
exp(−λ)λ(m+n)

(m+ n)!

(m+ n)!

m!n!
(q)m(1− q)(n)

This joint distribution function can be manipulated to conclude that:

fNt(m) =
∞∑
n=0

exp(−λq)(λq)m

m!

exp(−λ(1− q))(λ(1− q))n

n!
=

exp(−λq)(λq)m

m!

The above is referred to as the decomposition property of the Poisson distribution in Myerson

(1998). Novel here is the stochastic nature of M ; the above shows that M does not need to be
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independent of T . The t subscript can be dropped from fNt as the distribution is identical for

all listings t = {1, .., T}.

Illustration of equilibrium uniqueness in two-sided market

Figure A.1 shows graphically why the entry equilibrium is unique in this model despite the

presence of cross-side externalities that make the platform more attractive to bidders when

there are more sellers and vice versa. The figure depicts the best-response entry threshold

of seller i as a function of the threshold adopted by competing sellers (on the x-axis). The

solid line shows what happens on the equilibrium path. As described in Section 3.C, the

best-response function v̄0
BR
i (λ∗

r>0(v̄0−i)) is downward-sloping: a higher competing seller entry

threshold decreases expected seller surplus for any v0, lowering the threshold v̄0i
BR for which

seller i breaks-even. It can be explained by the particular two-sidedness of this market: bidders

expect a less attractive reserve price distribution when higher-value sellers populate the platform

and respond by entering less numerously, which negatively affects the expected surplus for

all sellers including seller i. The downward-sloping best-response function generates a single

crossing property resulting in a unique symmetric seller entry threshold where the best-response

function intersects the 45-degree line.

A specific challenge in two-sided markets is what happens off the equilibrium path. Simply

put, multiple equilibria exist when, if one side adopts a non-equilibrium entry strategy, this

strategy is sustainable due to the best-response of users on the other side. Consider the case

where bidders enter more numerously than their equilibrium strategy (λ > λ∗
r>0(v̄0−i)). The

dashed line in Figure A.1 represents seller i’s best-response threshold. It shifts up relative to the

solid line as expected seller surplus is higher for any v0 due to the increased number of bidders

per listing. However, this cannot be an equilibrium in the two-sided entry game as it violates

bidders’ zero-profit condition: with expected bidder surplus strictly decreasing in v̄0, λ > λ∗
r>0

can only be sustained by some v̄0 < v∗0(λ
∗
r>0). In turn, the latter leaves money on the table

for sellers with values ∈ [v̄0, v
∗
0(λr>0)] and is therefore also excluded as an equilibrium. For the
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v̄0−i

v̄0
BR
i

v∗0(λ
∗
r>0)

v∗0(λr>0)

v∗0(λ
∗
r>0) v∗0(λr>0)

v̄0
BR
i (λ∗

r>0(v̄0−i))

v̄0
BR
i (λr>0 > λ∗

r>0(v̄0−i))

off equilibrium path:

Figure A.1. : Graphic representation of unique entry equilibrium result

Notes. The solid black line represents the equilibrium entry threshold of seller i as best-response to competing
sellers adopting threshold v̄0−i and potential bidders best responding with λ∗

r>0(v̄0−i), i.e. the seller best-response
function v̄0

BR
i (λ∗

r>0(v̄0−i)).

same reasons λ < λ∗
r>0 cannot be sustained in equilibrium as that would require expected seller

surplus to decrease in the number of bidders.

Estimating the quality term

The quality term q = g(Z) is estimated using a linear regression of the hammer price on

Z in auctions with at least two bidders, irrespective of whether they have a positive or no

reserve price, but for positive reserve price auctions only using those that are unsold or that

have a hammer price exceeding the reserve price. Using more observations (compared to when

restricting the estimation sample to zero reserve prices only) results in more precise estimates.

To see why this is a valid approach, the hammer price when n ≥ 2 and cB = 0 is composed of

H =


Ṽn−1:n if r = 0

Ṽn:n if r > 0 and Ṽn:n < r

max(Ṽn−1:n, r) if r > 0 and Ṽn:n ≥ r
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When also making the dependence on data including zt explicit and when nt ≥ 2, log(Ht) equals

log(Ht) =


g(zt) + ln(Vnt−1:nt) if rt = 0

g(zt) + ln(Vnt:nt) if rt > 0 and Ṽnt:nt < rt

max

(
g(zt) + ln(Vnt−1:nt), log

(
eg(zt)V0t
(1−cS)

+mupt
))

if rt > 0 and Ṽnt:nt ≥ rt

where mupt denotes the reserve price mark-up in auction t, independent of zt as shown above.

Because mupt ≥ 0, the log hammer price is not linear in g(z) if Ht = rt and the good remains

unsold (which happens when the second-highest valuation is below the reserve price but the

highest valuation exceeds the reserve price). The largest set of auctions where the log hammer

price is linear in g(z) is those where either the reserve price is zero, the reserve price is positive

and the item is unsold, or the reserve price is positive but the hammer price exceeds the reserve,

and all three cases conditional on the number of bidders exceeding one. The log hammer price

then consists of

log(Ht) =


g(zt) + ln(Vnt−1:nt) if rt = 0

g(zt) + ln(Vnt:nt) if rt > 0 and Ṽnt:nt < rt

g(zt) + ln(Vnt−1:nt) if rt > 0 and Ṽnt:nt ≥ rt and Ht > rt

The conditions above can be summarized as nt > 1 and Ht ̸= rt. As such, ĝ(zt) is obtained

from the following linear regression equation using auctions that satisfy those conditions

log(Ht) = g(zt) + ϵt,(A.19)

where ϵt denotes the residual that is independent of g(zt).

B. Auxiliary tables and figures

This section presents auxiliary results that further illustrate the empirical setting and the

underlying mechanisms highlighted in the paper. Tables B. 1-B. 2 and Figures B.1-B.2 support

the notion that bidders face substantial listing inspection costs and thus are modelled to enter

randomly, as discussed in Section 2 of the paper. B. 3 summarizes the direct and indirect

network effects generated in the model (see Remark 1 in the paper) for the case when r > 0
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Table B. 1—: Suggestive evidence against bidder selection

Panel A
Dependent variable: sale price (conditional on sale)
Various samples and controls

(A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8) (A9)

Number of bidders in auction 15.661∗∗∗ 13.216∗∗∗ 13.226∗∗∗ 6.847∗∗∗ 5.952∗∗∗ 5.952∗∗∗ 8.806∗∗∗ 7.882∗∗∗ 7.813∗∗∗

(1.094) (1.094) (1.094) (0.430) (0.422) (0.422) (0.622) (0.647) (0.647)
Total number bidders product/market −0.186∗ −0.097 −0.081 −0.078∗∗ −0.037 −0.033 0.004 −0.037 −0.003

(0.076) (0.140) (0.143) (0.028) (0.051) (0.052) (0.035) (0.071) (0.074)

Product fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
Time trend (week): ✓ ✓ ✓
Sample Full Full Full Main Main Main r = 0 r = 0 r = 0
Observations 2,228 2,228 2,228 1,870 1,870 1,870 984 984 984
Adjusted R2 0.084 0.305 0.305 0.119 0.362 0.361 0.178 0.329 0.331

Panel B
Dependent variable: hammer price (unconditional on sale)
Various product/market definitions

(B1) (B2) (B3) (B4) (B5) (B6) (B7)

Number of bidders in auction 10.082*** 10.758*** 10.764*** 10.674*** 10.724*** 10.129*** 8.866***
(0.668) (0.612) (0.619) (0.614) (0.627) (0.692) (0.719)

Total number bidders product/market -0.013 0.031 0.009 0.048 0.014 -0.066 0.334+
(0.074) (0.026) (0.035) (0.050) (0.103) (0.218) (0.202)

Product fixed effects: ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time trend: ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sample r = 0 r = 0 r = 0 r = 0 r = 0 r = 0 r = 0
Observations 988 988 988 988 988 988 988
Adjusted R2 0.363 0.238 0.293 0.268 0.316 0.363 0.344

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Product/market specifica-
tions in Panel A: All columns: region×type×vintage, 4 weeks. Product/market specifications in Panel B: (B1):
region×type×vintage, 4 weeks, (B2)-(B7) market: 2 day rolling window, (B2) any wine, (B3) type, (B4) region,
(B5) region×type, (B6) region×type×vintage, (B7) subregion×type×vintage. The results in column (B1) are
reported in the main text.

and the benchmark when either r = 0 or v∗0 is fixed, and Table B. 4 presents reduced form

evidence consistent with these effects (for the benchmark case). Table B. 5 presents the results of

the counterfactual simulations designed to mimic the platform increasing the seller commission

(anti-competitively), which are discussed in the counterfactual section of the paper. The reduced

form evidence consistent with sellers entering the platform selectively requires some additional

explanation, as provided in the next Section.
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Table B. 2—: Independent listings: regression analysis

Dependent variable: bidders / listing transaction price reserve price

coef. s.e. coef. s.e. coef. s.e.

Product: any wine
30 days 0.00002 (0.0001) -0.002 (0.009) 0.009 (0.014)
7 days 0.001** (0.0003) 0.004 (0.021) -0.044 (0.039)
2 days 0.001** (0.0004) 0.032 (0.031) -0.011 (0.072)
Product: type (e.g., red)
30 days 0.001 (0.001) 0.012 (0.070) 0.202* (0.121)
7 days 0.007*** (0.002) 0.099 (0.146) -0.393 (0.343)
2 days 0.004 (0.003) 0.041 (0.197) -0.186 (0.494)
Product: region (e.g., Bordeaux)
30 days 0.0003 (0.0003) -0.001 (0.022) 0.044 (0.036)
7 days 0.002*** (0.001) 0.035 (0.051) -0.081 (0.109)
2 days 0.003** (0.001) 0.095 (0.076) -0.034 (0.174)
Product: region x type (e.g., red Bordeaux)
30 days 0.001 (0.001) 0.022 (0.119) 0.090 (0.214)
7 days 0.013*** (0.004) 0.459* (0.258) -0.570 (0.604)
2 days 0.002 (0.005) 0.400 (0.366) -0.786 (0.760)
Product: region x type x vintage (e.g., red Bordeaux 1980s)
30 days -0.002 (0.004) -0.531 (0.401) -0.521 (0.568)
7 days -0.003 (0.009) -0.550 (0.885) -0.445 (1.187)
2 days -0.010 (0.011) -0.300 (1.063) -0.136 (1.307)
Product: subregion x type x vintage (e.g., red Margaux 1980s)
30 days -0.002 (0.002) 0.196 (0.202) -0.179 (0.320)
7 days 0.005 (0.005) 1.083*** (0.388) -0.722 (0.758)
2 days -0.003 (0.006) 0.711 (0.468) -0.977 (0.861)
Observations 3,481 2,228 2,333
Sample all sold lots r > 0
Product fixed effects: ✓ ✓ ✓

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Results from 54 separate OLS
regressions of how the number of competing listings affects the three outcome variables (columns). Competing
listings defined as offering the same product in the same market, using 6 different product definitions and a
market being all listings ending within a 30 day, 7 day, or 2 day rolling window of the listing.
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Figure B.1. : Ullage classification and interpretation

Source: https://www.christies.com/Wine/Ullages 2013.pdf.
Notes. Numbers refer to auction house Christie’s interpretation of the fill levels, which are for Bordeaux-style
bottles: 1) Into Neck: level of young wines. Exceptionally good in wines over 10 years old. 2) Bottom Neck:
perfectly good for any age of wine. Outstandingly good for a wine of 20 years in bottle, or longer. 3) Very
Top-Shoulder. 4) Top-Shoulder. Normal for any claret 15 years or older. 5) Upper-Shoulder: slight natural
reduction through the easing of the cork and evaporation through the cork and capsule. Usually no problem.
Acceptable for any wine over 20 years old. Exceptional for pre-1950 wines. 6) Mid-Shoulder: probably some
weakening of the cork and some risk. Not abnormal for wines 30/40 years of age. 7) Mid-Low-Shoulder: some
risk. 8) Low-Shoulder: risky and usually only accepted for sale if wine or label exceptionally rare or interesting.
For Burgundy-style bottles where the slope of the shoulder is impractical to describe such levels, whenever
appropriate [due to the age of the wine] the level is measured in centimetres. The condition and drinkability of
Burgundy is less affected by ullage than Bordeaux. For example, a 5 to 7 cm. ullage in a 30 year old Burgundy
can be considered normal or good for its age.

https://www.christies.com/Wine/Ullages_2013.pdf
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Figure B.2. : Listing page example



64

Table B. 3—: Summary of network effects generated by the model

Two-sided entry Benchmark

r > 0 r = 0
Seller selection No seller selection

Direct network effect seller-side (lemons effect) – 0

Indirect network effect sellers on bidders +/– +

Direct network effect bidder-side +/– 0

Indirect network effect bidders on sellers + +

Notes. An indirect network effect captures how the entry of an additional user affects users on the other side,
before any equilibrium adjustments. A direct network effect also takes the equilibrium response of those users
on the other side into account, but not the equilibrium adjustment of users on the own side. The direct network
effect on the seller-side is described in the text. The indirect network effect of sellers on bidders is ambiguous
in positive reserve price auctions as the benefit of more listings is at least partially offset by the expectation of
less favorable reserve prices. The direct bidder-side network effect is ambiguous because the entry of additional
bidders attracts more but higher-reserve setting sellers, although in equilibrium bidders are all equally well off
given their zero profit entry condition.

Table B. 4—: Reduced form evidence predicted network effects

Dependent variable: Number bidders for product in market Number bidders per listing of product

(1) (2) (3) (4) (5) (6) (7) (8)

Number listings product/market 3.025∗∗∗ 2.869∗∗∗ 3.018∗∗∗ 2.992∗∗∗ −0.006 −0.015+ 0.004 0.005
(0.053) (0.072) (0.134) (0.133) (0.005) (0.008) (0.015) (0.015)

Product fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
No-reserve only: ✓ ✓ ✓ ✓
Time trend: ✓ ✓
Observations 1,229 1,229 457 457 3,481 3,481 1,148 1,148
Adjusted R2 0.726 0.810 0.867 0.871 0.0001 0.210 0.112 0.112

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Results from OLS regressions.
A product is defined as the combination of (region x wine type x vintage decade) corresponding to high-level
filters on the website. All listings are active for at most 31 days, and most of them for 5, 7 or 10. A market is
defined as the month when the auction ends.



ESTIMATING AN AUCTION PLATFORM GAME WITH TWO-SIDED ENTRY 65

Table B. 5—: Effects of doubling the commission index (cS + 0.102)

Simulated welfare effects Simple benchmarks
No entry Bidder entry Two-sided entry Elastic seller Pro-rata

Total effect (£1000) 3.8 5.4 5.8
Incidence on sellers (%) 92.3 77.2 60.3 100 100
Hammer price (% change) -3.2 -6.5 -1.0 0 0
Buyer “damage” (% price) 0.8 3.7 8.2 0 0
Seller “damage” (% price) 9.3 12.4 12.4 10.2 10.2

Notes. Simulations are based on homogenized auctions with r > 0 in the main sample. The welfare effects are
computed as a share of the counterfactual expected hammer price (the expected sale probability multiplied by the
expected transaction price conditional on a sale). The effects are computed in expectation for groups of buyers
and sellers, with a buyer being the in-expectation winning bidder, including in unsold listings, and therefore
include allocative inefficiency. This may depart from the more narrow interpretation of antitrust damages in
courts, depending on the jurisdiction (hence the quotation marks). In the pro-rata benchmark common for
typical markets, the damage to buyers (sellers) equals simply the amount of overcharge of the buyer (seller)
commission. In the (fully) elastic seller benchmark, the damage to buyers is none while the damage to sellers is
the amount of overcharge of either buyer or seller commission. Increasing the buyer commission from 0 to 0.1281
(keeping cS at 0.102) also doubles the commission index and results in the same welfare effects as in this table.
In that scenario, the pro-rata benchmark is 0% incidence on sellers and a 12.81% buyer damage.
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C. Empirical results supporting selective seller entry

One way to explore the issue of selective seller entry in the data relies on information about

potential sellers and how likely they are to enter based on observed characteristics. If some

observable traits shift the surplus from entering upwards, entry is worthwhile for sellers with a

higher latent marginal cost of selling. This in turn would be reflected by a positive association

between the reserve price and those traits, under the appropriate exclusion restrictions.

Recall that all 2,581 registered users who have ever listed a wine for sale are labeled as

potential sellers. With the number of potential sellers fixed, the time dimension of the data

must be exploited to generate variation in the entry decision of potential sellers. For the sake

of this descriptive analysis, define a market as a month, and consider the reduced form seller

selection equation

(C.1) yhmi = Xhmβ − vhmi,

where the expected surplus for seller h to enter market m and list item i (yhmi) is strictly

decreasing in its unobserved idiosyncratic valuation vhmi —reducing gains from trade— and

may also be a function of observed seller and market characteristics Xhm. Seller h enters

market m to list item i iff yhmi > 0, a process that is formalised in the structural model.

Estimation results for the selection equation in (C.1) are reported in Table C. 1 and reveal

some interesting empirical facts.64 Seller-level variables in Xhm describe how many years they

have been registered with the platform, the number of users that joined in the same month as

they did, and how they have been rated. We also know the number of listings in the market

offered by other sellers, which correlates positively with the decision to enter, perhaps because

the platform used marketing campaigns to engage users. Marketing campaigns or other outside

factors boosting a (fleeting) interest in the platform would also explain the negative effect of

the number of members that joined the platform in the same month. Having more listings in

64The analysis is also repeated with as dependent variable the number of listings that are created by a potential seller
in a market (see columns 4-6 of Table C. 1), using as preferred specification is the zero-inflated Poisson count model that
accounts for the abundance of seller-market observations with zero listings.



ESTIMATING AN AUCTION PLATFORM GAME WITH TWO-SIDED ENTRY 67

Table C. 1—: Potential sellers: predicting entry (first-stage)

Dependent variable: 1(yhmi > 0) =“dummy” Number yhmi > 0 = “count”

Regression model: Probit OLS OLS Zero-inflated OLS Zero-inflated
count data count data

(1) (2) (3) (4) (5) (6)

Duration membership BW (years) −0.090∗∗∗ −0.001∗∗∗ −0.004∗∗∗ −0.110∗∗∗ 0.005 −0.012+

(0.009) (0.0003) (0.0003) (0.010) (0.004) (0.007)
Nr members joined same month (100s) −0.268∗∗∗ −0.003∗ −0.012∗∗∗ −0.099 0.042∗ 0.058

(0.051) (0.001) (0.002) (0.066) (0.020) (0.044)
Nr ratings received (100s) 0.205∗∗∗ 0.022∗∗∗ 0.102∗∗∗ 0.134∗∗∗

(0.041) (0.002) (0.016) (0.032)
Nr ratings received (100s), squared −0.008∗∗∗ −0.001∗∗∗ −0.003∗∗∗ 0.010∗∗∗

(0.002) (0.0001) (0.001) (0.002)
Share ratings = negative −0.482+ −0.008 1.051∗∗ 0.465∗∗∗

(0.285) (0.008) (0.365) (0.104)
Share ratings = neutral −0.235 −0.003 0.769+ 0.039

(0.254) (0.006) (0.406) (0.082)
Has negative ratings 0.255∗∗ 0.004 −0.377∗∗∗ −0.359∗∗∗

(0.089) (0.004) (0.065) (0.050)
Nr r = 0 listings other sellers (100s) 0.129 0.003 0.010∗∗∗ 0.963∗∗∗ 0.139∗∗∗ 0.333∗∗∗

(0.081) (0.002) (0.002) (0.067) (0.033) (0.051)
Nr r > 0 listings other sellers (100s) 0.197∗∗∗ 0.006∗∗∗ −0.290∗∗∗ −0.035+

(0.044) (0.001) (0.039) (0.019)
Share other markets entered 4.093∗∗∗ 0.755∗∗∗ 2.723∗∗∗ 7.752∗∗∗

(0.146) (0.010) (0.078) (0.128)
Constant −2.168∗∗∗ 0.001 0.048∗∗∗ 0.522∗∗∗ −0.203∗∗∗ 1.262∗∗∗

(0.104) (0.003) (0.004) (0.122) (0.045) (0.090)

Observations 30,972 30,972 30,972 30,972 30,972 30,972
Adjusted R2 0.234 0.007 0.171
Log Likelihood −1,789.745 −4,054.471 −6,152.514

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Based on the main sample only.

more other markets than m makes a seller more likely to enter into market m too, highlighting

the fact that some sellers post listings on a regular basis.

The predicted entry probability Xhmβ̂ is used in a second stage to assess whether seller

selection can be detected in the data.65 For sellers with a higher expected utility from entering

based on observed characteristics (Xhmβ̂), higher values of vhmi will satisfy yhmi > 0. This will

be picked up by a positive association between the (average) reserve price and Xhmβ̂ for all

sellers that did enter.66 A key identifying assumption for interpreting such a positive association

as seller selection is that Xhm is independent of vhmi, so that that conditional on entry, Xhm

65As the exclusion restriction is more difficult to defend for seller ratings and for the share of other markets they enter,
a smaller entry model including only the time when the seller joined the platform and the number of other zero reserve

price listings offered by other sellers is used to predict Xhmβ̂ (columns 3 and 6 of Table C. 1). Specifically, including the
share of other markets entered could violate the exclusion restriction if regular entrants also are more professional and, say,
are less attached to their wine or have higher opportunity costs of selling. The ratings variables might suffer from similar
issues, and the positive coefficient on the number of ratings received can also result from reverse causality. A downside
of this approach is that the low predictive power of this more conservative entry model might mask the effect of seller
selection in the second stage.

66It is well-known that reserve prices and the benefit of setting a positive reserve price are both increasing in vhmi

(Riley and Samuelson (1981), Jehiel and Lamy (2015)).
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Table C. 2—: Sellers: suggestive evidence for selection (second-stage)

Dependent variable: Reserve price 1(Reserve price >0)
Regression model: OLS Tobit OLS OLS OLS Probit OLS

(1) (2) (3) (4) (5) (6) (7)

Predicted Xhmβ̂ 1,076.515∗∗∗ 1,076.515∗∗∗ 106.781∗∗∗ −46.585+ 10.539∗∗∗ 10.539∗∗∗ 0.033
(119.392) (119.310) (15.464) (26.295) (0.828) (0.828) (0.145)

Observations 1,471 1,471 1,471 1,471 2,322 2,322 2,322
Auction-level observables (Z): ✓ ✓
First-stage model = dummy or count dummy dummy count count dummy dummy count
Adjusted R2 0.052 0.031 0.435 0.065
Log Likelihood −7,840.082 −1,522.049 −834.253

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Based on the main sample only,
omitting 465 observations where the seller id is missing. Auction-level observables (Z) are those used for the
homogenization of auctions in the structural analysis, listed in Table H. 1. The first-stage model = “dummy”
refers to an entry model with a binary left-hand side variable 1(yhmi > 0) indicating whether seller h entered
market m with item i, corresponding to column 3 of Table C. 1. The first-stage model = “count” refers to an
entry model with a numeric left-hand side variable yhmi indicating the number of listings that seller h has in
market m, corresponding to column 6 of Table C. 1.

does not affect the reserve price.67

The estimation results from the second stage, reported in Table C. 2, support the conjec-

ture that higher reserve prices are associated with a higher predicted entry probability, which

is indicative of selective seller entry as explained above.68 These results should be taken as

suggestive only as the data does not contain strong entry shifters that are plausibly excluded

from the seller’s valuation, and the effect disappears when including the rich set of auction-level

observables that is used in the structural analysis to homogenize auctions (see columns 4 and 7

of Table C. 2). Nonetheless, it is considered reasonable to assume that potential sellers are het-

erogeneous and know their own idiosyncratic value draws, and to let the structural estimation

determine how heterogeneous sellers are. Finally, the descriptive analysis in this section con-

siders whether variation in the data is consistent with selective seller entry, but the structural

analysis is developed separately and does not rely on information about potential sellers. For

instance, due to the absence of strong seller entry shifters, the data from different months is

67This is similar to the reduced form analysis of selective bidder entry in Roberts and Sweeting (2011), which also relies
on the fact that in a selective entry model the set of entrants is a non-random sample of the set of potential entrants.
Differences are that, in Roberts and Sweeting (2011), bidders observe a signal of their valuation before entry and this signal
is assumed to be normally distributed.

68While the estimation results go in the expected direction for five regression specifications, the effect is insignificant
in one of those, and when including additional auction-level variables the coefficient swaps sign. Column 1 is based on an
OLS regression of reserve prices on the entry probability. Column 2 presents results from a Tobit model with left-censoring
of the reserve price at the lowest observed value. The dependent variable in columns 3-6 is an indicator for whether the

seller has set a positive reserve price. Columns 4-6 furthermore use the alternative measure of Xhmβ̂ from the zero-inflated
Poisson count model based on the number of listings that seller h created in market m.
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pooled in the structural estimation of the model and only one equilibrium seller entry threshold

is obtained.

D. Entry equilibrium without large population approximation

This supplementary material provides further intuition behind the entry equilibrium. It also

shows that the large population approximation is merely adopted for computational feasibility

and does not drive the results. For brevity, attention is limited to auctions with positive reserve

prices as they provide the more interesting case with two-sided entry. As before, r̃ denotes

the optimal reserve price increased with buyer premium, r̃ = (1 + cB)r
∗(v0), and the number

of listings Tr>0 is known to potential bidders before entering, and bidders are sorted with

equal probability over available listings. Also, ṽ0 denotes a candidate seller entry threshold and

ΠB,r>0(c, ṽ0; p) potential bidders’ expected surplus from entering the platform as a function of

their entry probability p:

(D.1) ΠB,r>0(c, ṽ0; p) =

NB
r>0−1∑
n=0

E[πB(n+ 1, c, v0)|V0 ∈ [vR0 , ṽ0]fNr>0,Tr>0(n; p)− eB,r>0

It takes the expectation of ΠB(n, v0) ((4) with optimal r as in (3)) over: i) possible seller

values given sellers’ entry threshold and ii) the number of competing bidders given their entry

probability. Bidding in one listing at a time, the entry problem for potential bidders is then

equivalent to one in which they consider entry into a listing, as entry costs eB,r>0 are associated

with each listing. Components of equation (D.1) are:

E[πB(n+ 1, c, v0)|V0 ∈ [vR0 , ṽ0]] =

∫ ṽ0

vR0

πB(n+ 1, c, v0)fV0|V0∈[vR0 ,ṽ0
](v0)dv0(D.2)

fNr>0,Tr>0(n; p) =

(
NB,r>0 − 1

n

)
(

p

Tr>0
)n(1− p

Tr>0
)N

B,r>0−1−n(D.3)

where fNr>0,Tr>0(n; p) denotes the Binomial probability that n out of NB,r>0 − 1 competing

potential bidders arrive in the same listing as the potential bidder who considers entering the

platform.

πB(n + 1, c, v0) is strictly decreasing in n. Hence, the bidder entry problem is equivalent to
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the Levin and Smith (1994) entry model, which assumes that expected bidder surplus decreases

in n. The equilibrium bidder entry probability solves zero profit condition:

(D.4) p∗Tr>0(Tr>0, f, ṽ0) ≡ argp∈(0,1) π
Tr>0

B (c, ṽ0; p) = 0

In this equilibrium the number of (competing) bidders per listing follows a Binomial distribution

with mean (NB,r>0− 1)p
∗Tr>0

Tr>0
and variance (NB,r>0− 1)p

∗Tr>0

Tr>0
(1− p∗Tr>0

Tr>0
). Furthermore, a no-

trade entry equilibrium at p = 0 that trivially solves (D.4) always exists, and it is excluded from

the analysis based on the empirical observation that bidders currently play the positive trade

equilibrium.

A key property is that p∗Tr>0

Tr>0
is independent of Tr>0 conditional on ṽ0. Bidders only derive

positive surplus from the listing that they are matched to, and in the presented auction platform

model Tr>0 itself does not affect E[πB(n+1, c, v0)|V0 ∈ [vR0 , ṽ0]]. The zero profit condition there-

fore guarantees that in equilibrium a change in Tr>0 causes p
∗Tr>0 to adjust to keep fNr>0,Tr>0(.)

constant.

E. Two-sided entry model: Extension to selective entry

This section extends the model to one where bidders enter after knowing their valuation as in

the models of Samuelson (1985) and Menezes and Monteiro (2000). Results are presented for

the case with positive reserve prices, which generates the two-sidedness that is of main interest

in this paper. By standard reasoning, the selective entry model results in an equilibrium where

bidders enter if and only if their valuation exceeds the equilibrium threshold v∗. The distribution

of valuations for bidders on the platform is denoted by ∀v ∈ [v∗, v] :

(E.1) FV |V≥v∗(v) =
FV (v)− FV (v

∗)

1− FV (v∗)

The auction stage equilibria remain the same as in the random entry model presented in the

main text, as actions are taken after bidders learn their valuation in both cases. Listing-level

expected surpluses are different from those in equations (4)-(5). The listing-level expected
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surplus for a bidder with valuation vi in a listing with n− 1 competing bidders, fee structure c,

when the seller has a private value of v0, and conditional on vi ≥ r̃:

(E.2) πB(vi, n, f, v0, v
∗) = FV |V≥v∗(vi)

n−1Ev∗ [vi −max(Vn−1, r̃)|Vn−1 ≤ vi, vi ≥ r̃]

πB(vi, n, f, v0, v
∗) conditions on vi ≥ r̃ because it takes the seller value v0 as known at this

point. The first part indicates the probability that n−1 competing bidders in the listing draw a

lower value than vi —the probability of winning— and the second part consists of the expected

surplus conditional on winning. The latter is computed with the distribution of valuations

among bidders who enter the platform, indicated with the v∗ superscript on the expectation.

The expected listing-level surplus for sellers is the same as in the random entry model, except

that the expected transaction price is computed using FV |V≥v∗(v):

(E.3) πS(n, f, v0, v
∗) ≡

(
Ev∗ [max(Vn−1:n, r̃)|Vn:n ≥ r̃](1− cS)− v0

)
[1− F v∗

Vn:n
(r̃)]

where F v∗
Vn:n

denotes the distribution of the highest out of n values drawn from FV |V≥v∗ . It is

straightforward to see that, as in the random entry model, πB(vi, n, f, v0, v
∗) decreases in n and

in v0 and πS(n, f, v0, v
∗) increases in n and decreases in v0.

The next steps are to show how the equilibrium bidder entry threshold is best-responds to

a candidate seller entry threshold ṽ0 and how the seller entry threshold is set in equilibrium.

The bidder entry equilibrium is characterized as the threshold value that solves the marginal

bidder’s zero profit condition when other bidders also enter if and only if their valuation exceeds

that threshold. Let ṽ denote a candidate bidder entry threshold. Moreover, ΠB,r>0(vi, f, ṽ0; ṽ)

denotes potential bidders’ expected surplus from entering the platform if they have valuation

vi and competing bidders adopt threshold ṽ. As in the random entry model, it builds on the

listing-level expected bidder surplus and takes expectations over: 1) seller valuations V0 given
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ṽ0, and 2) the number of competing bidders:

ΠB,r>0(vi, f, ṽ0; ṽ) =(E.4)

NB
r>0−1∑
n=0

E[πB(vi, n+ 1, f, v0, ṽ)|V0 ∈ [vR0 , ṽ0]]fNB
r>0,Tr>0

(n; ṽ)dn− eB,r>0

Without imposing a large population approximation, fNB
r>0,Tr>0

(n; ṽ) is Binomial, and it also

depends on the total number of potential bidders in the population NB
r>0 and the observed

number of listings Tr>0:

(E.5) fNB
r>0,Tr>0

(n; ṽ) =

(
NB

r>0 − 1

n

)(
1

Tr>0

)
(1− FV (ṽ))

n(
1

Tr>0
FV (ṽ))

NB
r>0−1−n

where 1
Tr>0

(1 − FV (ṽ)) is equal to the probability that a potential bidder enters (i.e. draws

a valuation above ṽ) the platform and is sorted to the same listing as bidder i (with uniform

sorting, this happens with probability 1
Tr>0

). Hence, a unique entry equilibrium bidder entry

threshold solves the marginal bidder’s zero profit condition:

(E.6) v∗(f, ṽ0) ≡ argṽ∈[v,v]{ΠB,r>0(ṽ, f, ṽ0; ṽ) = 0}

The result relies on the facts that: 1) bidders have a unique best-response for any ṽ because

ΠB,r>0(vi, f, ṽ0; ṽ) is strictly increasing in their own vi, and 2) ΠB,r>0(vi, f, ṽ0; ṽ) is strictly

increasing in ṽ because the number of competing bidders is stochastically decreasing in ṽ, so

the best-response function v∗(v) is downward-sloping in ṽ and satisfies a single-crossing property.

As such there is a unique symmetric equilibrium threshold v∗, which is a fixed point as defined

in (E.6) that makes the marginal bidder indifferent between entering and staying out.

The result holds for any realization of Tr>0 given v0. As in the baseline model, whether also a

unique seller entry equilibrium exists depends on how the expected surplus of sellers is affected

by v∗(f, v). We know that v∗ decreases in v as it generates stochastically higher reserve prices on

the platform, and Menezes and Monteiro (2000) show that the expected seller revenue decreases

in v∗. Expected seller surplus therefore decreases in competing sellers entry threshold, which
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is —as explained in the discussion of the equilibrium results in the main text. In what follows,

fNB
r>0,Tr>0

(n; v∗(ṽ0)) describes the equilibrium distribution of the number of bidders per listing

when sellers adopt entry threshold ṽ0.

The seller entry equilibrium is characterized by the v∗0 that solves the zero profit entry condi-

tion for the marginal seller. Let πS(c, v0;λ
∗
r>0(ṽ0), ṽ0) denote expected surplus for a seller with

valuation v0 > vR0 when NS−1 competing sellers enter the platform if and only if their valuation

is less than threshold ṽ0. It involves: 1) their listing-level expected surplus, 2) an expectation

over the number of bidders per listing given ṽ0 and bidders’ equilibrium best-response to this

threshold captured with the equilibrium distribution of the number of bidders per listing, and

3) an expectation over the realized number of listings Tr>0 when NS potential sellers adopt

entry threshold ṽ0:

πS(c, v0; fNB
r>0,Tr>0

(n; v∗(ṽ0)), ṽ0) =(E.7)

NS∑
Tr>0=1

NB∑
n=0

πS(n, f, v0, v
∗(ṽ0))fNB

r>0,Tr>0
(n; v∗(ṽ0))− cL − eS

A unique equilibrium seller entry threshold solves the marginal seller’s zero profit condition:

v∗0 ≡ argṽ0s.t.FV0
(ṽ0)∈(0,1){πS(c, ṽ0; fNB

r>0,Tr>0
(n; v∗(ṽ0)), ṽ0) = 0}(E.8)

The proof requires three parts. First, sellers have a unique best-response for any competing ṽ0,

because πS(c, ṽ0; fNB
r>0,Tr>0

(n; v∗(ṽ0)), ṽ0) strictly decreases in their own v0. Second, given that

πS(c, ṽ0; fNB
r>0,Tr>0

(n; v∗(ṽ0)), ṽ0) strictly decreases in competing sellers’ ṽ0 because v∗(ṽ0) de-

creases in ṽ0 and πS(n, f, v0, v
∗(ṽ0)) decreases in v∗ (see e.g. Menezes and Monteiro (2000)),

and because the entry of competing sellers does not affect seller surplus in other ways, the best-

response function is strictly decreasing in competing sellers entry threshold. Third, symmetry

then delivers a unique equilibrium threshold, v∗0, which is the fixed point in seller value space

solving (E.8) i.e., making the marginal seller indifferent between entering and staying out.

Compared to the random entry model presented in the main text, the seller best-response
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function v∗0(ṽ0) is less steep as the least attractive bidders refrain from entering when ṽ0 in-

creases.

F. Additional details estimation algorithm

This section provides details about the estimation of structural parameters not included in

the main text, including especially êB,r>0, êB,r=0, êS , and p̂0,r>0. The estimated entry costs

(opportunity costs of time) solve the relevant zero profit conditions, given estimated parameters

(θ̂b, θ̂s, v̂
R
0 , p̂0,r>0) and given the entry equilibrium at those parameters. As estimating θ̂s itself

requires at least one iteration of solving for the entry equilibrium given initial parameters θ̂0s ,

the estimation algorithm proceeds as follows. First, based on v̂R0 and υ̂Tr>0 , estimate θ̂0s by

maximum concentrated likelihood as described in the main text. Then, solve for initial entry

costs estimates (ê0B,r>0 and ê0S) as detailed below. After obtaining these initial values, for each

iteration k = 1, . . . :

• solve for the unique v∗k0 (θ̂k−1
s , êk−1

S ) and the associated λ∗k
r>0 which pin down the marginal

seller (equation (13)),

• estimate θ̂ks (v
∗k
0 ) by maximum concentrated likelihood (equation (26)),

• solve for the êkS = e∗S(v
∗k
0 , θ̂ks , λ

∗k
r>0) that satisfies the zero profit entry condition (equation

(17)),

until convergence, omitting from the notation above any parameters that remain fixed through-

out. For êB,r>0 and êB,r=0, the initial estimator is the same as the final estimator although

finally êB,r>0 is based on the updated θ̂s. They are estimated as the value of the entry costs

that sets respectively the numerically approximated values of ΠB,r>0(.) and ΠB,r=0(.) equal to

0 as dictated by the two zero profit entry conditions for potential bidders. This clearly depends

on the relevant distribution of the number of bidders per listing, and hence on the estimated

values of λ∗
r>0, p0,r=0, and λ∗

r=0. In auctions with no reserve price, the mean observed N is a
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consistent estimator of λ∗
r=0:

(F.1) λ̂∗
r=0 =

1

|Tr=0|
∑

t∈Tr=0

nt

Note that λ̂∗
r=0 and λ̂∗

r>0 are only obtained to estimate entry costs and they are not treated as

structural parameters. We now turn to the estimation of λ̂∗
r>0.

In positive reserve price auctions, a difficulty is that only the actual number of bidders A is

observed, which might be less than the number of bidders in the listing N . In the BW data, the

reserve price is partially secret, but in that case, the platform provides some information about

it (“reserve not met”, “reserve almost met”, or “” if the standing price exceeds the reserve).

If the reserve price were observed (and the only reason for bidders not submitting a bid), a

consistent estimate of λ∗
r>0 equals the value that maximizes the likelihood of the homogenized

second-highest bids bt and the number of actual bidders at in positive reserve auctions given

estimated bidder valuation parameters and homogenized reserve prices rt. In particular, the

joint density of (bt, at) if the number of potential bidders nt would be known, with r̃t = rt(1+cB),

∀t ∈ Tr>0:

h(bt, at|nt, rt, zt, θ̂b) = {FV (r̃t; θ̂b)
nt}I{at = 0}(F.2)

{ntFV (r̃t; θ̂b)
nt−1[1− FV (r̃t; θ̂b)]}I{at = 1}

{
(

nt

nt − at

)
FV (r̃t; θ̂b)

nt−at [1− FV (r̃t; θ̂b)]
at

at(at − 1)FV (b̃t; θ̂b)
at−2[1− FV (b̃t; θ̂b)]FV (b̃t; θ̂b)}I{at ≥ 2}

Note that h(bt, at|nt, rt, θ̂b) = 0 when nt = 0. The first line covers the probability that all

nt bidders draw a valuation below the reserve price, the second line the probability that one

out of nt draw a valuation exceeding r̃ while the others don’t, and the final two lines cap-

ture the probability that at out of nt draw a valuation exceeding the reserve and that the

second-highest out of them draws a conditional value equal to b̃t = bt(1 + cB). Without ob-

serving nt, a feasible specification takes the expectation over realizations of random variable
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N ∼ generalized Pois(λ∗
r>0, p0,r>0). Using the more flexible two-parameter Poisson distribution

allows for an unspecified reason for observing no bids, in addition to all values being below the

reserve price or no bidders entering the auction. This feasible specification is the basis of the

likelihood function that (λ̂∗
r>0, p̂0,r>0) maximizes:

g(bt, at|rt, zt, θ̂b;λ∗
r>0, p0,r>0) =(F.3)

∞∑
k=at

h(bt, at|nt = k, rt, zt, θ̂b)fNr>0|Nr>0≥A(k;λ
∗
r>0, p0,r>0)

L(λ∗
r>0, p0,r>0; {bt, at, rt, zt}t∈Tr>0) =

∑
t∈Tr>0

ln(g(bt, at|rt, zt, θ̂b;λ∗
r>0, p0,r>0))(F.4)

(λ̂∗
r>0, p̂0,r>0) = argmaxL(λ∗

r>0, p0,r>0; {bt, at, rt, zt}t∈Tr>0)(F.5)

The estimator does not require interpretation of losing bids. While the resulting estimator does

capture the censoring of bidders to some extent, it does not address potential intra-auction

dynamics to the extent that some other estimators do.69 Specifically, the estimated θ̂b are based

on the assumption that the second-highest bid equates to the second-highest out ofN = A values

in no-reserve auctions. It is worth emphasizing that the effect of this abstraction is minimized in

the presented model with endogenous two-sided entry, relative to a model without entry. To see

why, consider a scenario where the true λ∗
r>0 would be larger than estimated due to some bidders

entering after the standing price exceeds their valuation. In that scenario, the true FV would be

stochastically dominated by the estimated distribution as the hammer price is really the second-

highest out of more draws from FV than what is captured in the analysis. The true êB,r>0 in

that case would also have to be lower than estimated, as the per-bidder expected surplus from

entering the platform is lower. Hence, without changing the fee structure but with endogenous

two-sided entry, simulating entry decisions of lower-value potential bidders facing a lower entry

costs would result in the exact same outcomes. Moreover, in a model without seller entry and

with a Levin and Smith (1994) bidder entry process, the effect of higher entry and lower bidder

69Hickman, Hubbard, and Paarsch (2017) (for the case of non-binding reserve prices) and Bodoh-Creed, Boehnke, and
Hickman (2021) (for binding reserve prices) provide more comprehensive models to account for intra-auction dynamics in
ascending auctions. My empirical setting is in between these cases, with the platform revealing some information about
the secret reserve price, and the algorithm proposed by Platt (2017) based on a Poisson arrival process would apply if
p0,r>0 = 0 and if bidders arrive stochastically over time at a constant rate and bid only once.



ESTIMATING AN AUCTION PLATFORM GAME WITH TWO-SIDED ENTRY 77

values also cancel out (Platt (2017)) even when changing the fee structure. Given that the

effects of overestimating bidder values and overestimating the bidder entry costs, relative to the

scenario with intra-auction dynamics, offset each other at least partially, this abstraction is also

not considered to be of first-order importance in the model with two-sided entry.70

The above describes how initial values ê0B,r=0 and ê0B,r>0 are estimated. The initial value

êS
0 is estimated as follows. υ̂Tr>0 is the sample maximum of a noisy first stage estimator and

likely overestimates the true v∗0.
71 This is confirmed numerically. Starting from a relatively high

êS
0 = max(ê0B,r>0, êB,r=0) —which will be an overestimate if bidders need to spend more time

inspecting a listing and bidding on it than that sellers require to create it—, and implementing

the NPL algorithm, both êS
k and v∗k0 converge downwards. The final estimate êS is lower than

its starting value, but not by much.

One benefit of the NPL algorithm to estimate θ̂S is that the initial values do not have to be

consistent estimates of their population counterparts ((Aguirregabiria and Mira, 2002, Proposi-

tion 2)) when there is a unique stable equilibrium (see also Aguirregabiria and Mira (2010) and

Aguirregabiria and Marcoux (2021)). Imposing the equilibrium conditions of the game in the

recursive algorithm improves the estimates throughout until it converges at the equilibrium.

Note finally that θ̂b, v̂
R
0 , p̂0,r>0, λ̂

∗
r=0, and êB,r=0 are never updated in the estimation algo-

rithm. In terms of the selected parametric families, the generalized (or zero-inflated) Poisson

70However, seller selection does introduce nonlinearities into the system so that the direction of the bias (if any) cannot
be signed ex-ante. The assertion that intra-auction dynamics are less important in our setting with endogenous two-
sided entry is therefore supported with results from a robustness analysis based on the filtering described in Platt (2017).
Specifically, the model is re-estimated assuming that all potential bidders in both positive and zero reserve price auctions
arrive at a Poisson rate (non-generalized, hence with pr>0 = 0), observe the standing price, and place a bid that is equal
to their valuation when the standing price is below it. Estimating the model with these additional assumptions results
in more numerous entrants (λ∗

r>0 and λ∗
r=0) and lower entry costs and bidder values, as explained above. However, as

expected, these effects almost fully offset each other when looking at the effect of changing the fee structure. Figure H.1
illustrates this for the main counterfactual policy simulation that increases cL by £1. The figure supports the robustness
of the lemons effect to this and other alternative assumptions, as detailed in Online Appendix H.

71υ̂Tr>0 is certainly ≥ v∗0 when the population NS → ∞ and no trimming is applied, in which case the maximum

v̂0t = v∗0 . In finite samples, υ̂Tr>0
≥ v∗0 only if the noise introduced from having estimated θ̂b and ĝ(Z), is larger than

the true “gap” between the highest seller valuation in the data and the equilibrium threshold v∗0 . Letting θPs and gP (Z)

denote the true population values of the parameters and v0t(θPs , gP (Z)) the true seller value draw in listing t, then v̂T,r>0

is an overestimate if and only if

max(v̂0t)−max(v0t(θ
P
s , gP (Z)))︸ ︷︷ ︸

estimation noise gap

> v∗0 −max(v0t(θ
P
s , gP (Z)))︸ ︷︷ ︸

value draw gap

.(F.6)

The sample maximum is known to be a biased but super-consistent estimator of its population counterpart so the bias, or
the value draw gap, goes to 0 at a rate of O( 1

T
) when T is the sample size. Hence it depletes faster than the estimation

noise gap.
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distribution has PDF:

fNr>0(k;λr>0, p0,r>0) = (1− p0,r>0)
exp(−λr)λ

k
r

k!
+ p0,r>0I{k = 0},

which reduces to a standard Poisson distribution for p0,r>0 = 0. The log GGD(µ, σ2, κ) has

PDF:

f(x;µ, σ2, κ) =
ϕ(y)

σ2 − κ(ln(x)− µ)
,with ϕ(.) the standard normal PDF and

y =
ln(x)− µ

σ2
I{κ = 0}+−1

κ
ln(1− κ(ln(x)− µ)

σ2
)I{κ ̸= 0},

reducing to the Normal distribution for κ = 0.

G. Reserve price approximation

Reserve prices are defined as the maximum of the increased minimum bid amount and the

secret reserve price. The increased minimum bid amount is recovered as the standing bid when

the number of bidders is zero. The secret reserve price is approximated as the average between

the highest standing price for which the reserve price is not met and the lowest for which it is

met. If all bids would be recorded in real time, this approximation would be accurate up to

half a bidding increment due to the proxy bidding system. To relieve traffic pressure on the

site, bids are tracked on 30-minute intervals. A limitation of this approach is that the reserve

price approximation could be more than half a bidding increment off if the bids are not placed

at regular intervals. To compromise between too many data requests and accuracy, a separate

dataset is collected that accesses all open listings at 30-second intervals but only for the duration

of two weeks. This high-frequency dataset is used to verify the reserve price approximation in

the paper. It is useful to note here that the gap between the highest bid for which the reserve

price is unmet and the lowest for which it is met is indeed smaller in the high-frequency (£7)

than in the main (£44) sample.

The presented estimation method requires that the estimated distribution of reserve prices is

consistent for its population counterpart. Equality of the distribution of approximated reserve
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prices in the main sample and the distribution of (approximated) reserve prices in the smaller

high frequency sample is tested with a two sample nonparametric Kolmogorov-Smirnov test.

To account for different listing compositions the empirical reserve price distributions are right-

truncated at the 90th percentile of the high frequency reserve price sample. The null hypothesis

is that the two right truncated reserve price distributions are the same.

In particular, letting FF
R and FR

R respectively denote the empirical distribution of right trun-

cated approximated reserve prices in the high frequency (F) and regular (R) samples, the

Kolmogorov-Smirnov test statistic is defined as:

(G.1) Df,r = sup
x

|FF
R (x)− FR

R (x)|,

with supx the supremum function over x values and f and r respectively denoting the relevant

number of observations in the high frequency and regular samples, which are 446 in the high-

frequency sample and 1, 147 in the regular sample. With Df,r = 0.060, the null cannot be

rejected at the 5 percent level (Df,r > 1.36
√

(f+r
fr ), the p-value = 0.1996).

The associated empirical distributions are plotted in panel (a) of Figure G.1. As the approxi-

mation only delivers a lower bound on secret reserve prices in auctions that do not lead to a sale,

omitting such lots generates a slightly different approximation of the reserve price distribution

(plotted in panel (b) of Figure G.1). The two-sample Kolmogorov-Smirnov test is therefore

repeated when excluding unsold lots from the regular sample. With Df,r = 0.066, also in this

sample the null that the two distributions are equal cannot be rejected at any reasonable level

(the p-value = 0.2015). This second test is based on a lower number of observations (r = 627).

H. Robustness to model assumptions and estimation algorithm

The main counterfactual analysis in Section 6 builds on the model estimates and highlights

the role of the negative seller-side network effect in this two-sided platform setting with seller

selection. To consider the impact of various choices made in modeling and in estimation, the

model is re-estimated under various alternative assumptions, and the lemons effect is evaluated
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(a) regular sample: all
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Figure G.1. : Empirical distributions underlying the presented Kolmogorov-Smirnov tests

with the alternative sets of structural parameters. The results of this exercise are displayed

in Figure H.1. The dark solid line represents the results based on the model and estimation

algorithm presented in the main body of the paper. Overall, it can be concluded that changing

the listing fee has a similar effect under all alternative simulations, with only small differences

in the magnitudes across specifications. The following alternative specifications are considered:

• The alternative “One-step NPL” only computes the equilibrium once, rather than esti-

mating until convergence.

• The alternative “Iterate NPL, lowest funcval” selects the estimates that achieve the lowest

function value / highest likelihood of implied seller values as given in (24), after iterating

until convergence of the algorithm. It can be seen that this achieves the exact same results

as taking the final, converged, values as is done in the main body of the paper.

• The alternative “Platt” adopts the filtering process described in Platt (2017) based on an

argument of inter-auction dynamics, as discussed in Online Appendix F. To adopt this

algorithm, the following additional restrictions are placed on the data. The number of

participants n is Poisson distributed with mean λ (and p0 = 0), and arrive in a random

order with each permutation of the arrival order being equally likely. Once a participant
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arrives, it immediately places a bid equal to its valuation whenever the standing price is

below it. Platt (2017) shows that under these assumptions the observed mean number of

bidders per listing (denoted by a) relates to λ according to

(H.1) a(λ) = 2(ln(λ) + γ + Γ(0, λ))− 1 + exp(−λ).

Under these restrictions, the simulation exercise thus solves for the λ that satisfies (H.1).

In zero reserve price auctions, a(λ) is observed as the sample mean number of bidders per

listing as in (F.1). In positive reserve price auctions, there is additional censoring by the

(secret) reserve price, and a(λ) is taken to be the maximum likelihood estimate of the

number of bidders in the baseline model without intra-auction dynamics, e.g. the λ∗
r>0 in

(F.2).

• The alternative “minimal gZ” excludes in the homogenization step all variables from Z

that relate to seller ratings, delivery costs and delivery options, and payment options.72

The variables that are retained are listed in column 4 of Table H. 1, which contains the

estimates of ĝ(Z) for the minimal model.

• The alternative “sold only” uses only sold auctions to estimate seller parameters θs. To

do so, the estimator adjusts the likelihood function in (24) for the fact that sold listings

are not a random sample of all listings. Specifically, the original estimator is based on

the unconditional probability of observing the sample of v̂0t on the platform given v∗0,

e.g. based on the h(v̂0t|v∗0, rt, zt; θs) defined in (23) and uses all t ∈ Tr>0. The alternative

estimator labeled “sold only” is thus based on the subset of positive reserve price auctions

that resulted in a sale, where the contribution to the likelihood for observation t, ∀t ∈ Tr>0

72For completeness, the omitted variables in the “smaller” subset of Z are the following: whether the buyer can collect
the wine, whether the buyer can only collect the wine, whether returns are accepted by the seller, whether insurance is
included in the delivery costs quote, whether the seller ships to the UK, whether payment by bank is allowed, whether
payment via PayPall is allowed, whether payment by cheque is allowed, whether payment in cash is allowed, whether the
item is shipped with Royal Mail, whether the item is shipped with ParcelForce, whether the seller mentions fast shipping,
the estimated alcohol duty, the estimate VAT, the estimated shipping costs, whether the seller has ratings from previous
transactions, the number of seller ratings from previous transactions, and the number of ratings squared.
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s.t. 1(sale)t = 1, equals

(H.2)∑
n≥at

h(v̂0t|v∗0, rt, zt; θs)p(sale|rt, n)fNr>0(n; λ̂
∗
r>0, p̂0,r>0)/(1− FNr>0(at; λ̂

∗
r>0, p̂0,r>0))

multiplying h(v̂0t|v∗0, rt, zt; θs) by the sale probability given rt, which is computed as:

(H.3) p(sale|rt, n) = 1− FV (log(rt)− ĝ(zt); θ̂b)
n

and taking the expectation over Nr>0 given the realization of actual bidders at. The rest

of the estimation procedure is unchanged.

• The alternative “without N dummies” presents the results when excluding only the number

of bidders from the estimation of g(Z). Column 3 of Table H. 1 reports the estimates of

the homogenization step for this specification.

• The alternative “Only secret r” excludes observations from auctions that have a publicly

observed increased minimum bid amount when estimating the seller valuation parameters.

The results from all alternative model specifications point towards the same pattern and

roughly the magnitude of the lemons effect.

The next robustness analysis considers the effect of keeping the threshold beyond which

sellers set a positive reserve price, vR0 , fixed in the analysis (see also footnote 36). The expected

surplus for sellers is simulated as a function of V0 and separately when setting a positive reserve

price and when setting no reserve price, given the estimated structural parameters in the main

sample. Figure H.2 displays the results. The solid lines with marker show the expected seller

surplus when setting a reserve price, and the plain solid lines show the expected surplus when

setting r = 0. The black pairs correspond to the baseline fee structure, and the grey pairs are

simulated based on increasing the listing fee by £1 (in panel a) increasing the seller commission

by 5 percentage points (in panel b). The expected seller surplus is scaled by the average hammer

price in the estimation sample.
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Figure H.1. : Robustness of lemons effect to alternative assumptions

The results confirm that low-v0 sellers are better off setting a zero reserve, and also that the

level beyond which it is optimal to set a positive reserve price (vR0 ) is little affected by changes

in the fee structure, whereas the threshold beyond which it is optimal not to enter (v∗0) varies

much more. This is because changes in the platform’s fee structure affect sellers in both r > 0

and r = 0 listings, but not sellers who don’t enter.

The simulations are also useful to assess the role of fixing the threshold for the uniqeness of

the entry equilibrium, because endogenizing vR0 could in theory lead to multiple equilibria of

the two-sided entry game. For example, if for some policy change r > 0 listings become more

attractive relative both to the outside option and to r = 0 auctions, so that vR0 decreases while

v∗0 increases, and given the ambiguous effect that this has on bidders in r > 0 auctions, multiple

combinations of vR0 and v∗0 could be sustained in equilibrium. The fact that the simulations

show that vR0 and v∗0 move in the same direction when the fee structure changes confirms that,

in this setting, even when vR0 would be endogenized there remains a unique entry equilibrium.73

73One caveat is that the simulations are based on model primitives that are estimated under the assumption of a unique
equilibrium. If in reality there are multiple equilibria, it cannot be ruled out that the true FV is different in a way that
undermines the conclusions in this paragraph.
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(a) Increasing cL (b) Increasing cS

Figure H.2. : Numerical simulations: minimal effect endogenizing vR0
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Table H. 1—: Results from homogenization step (main sample), with alternative specifications

(1) (2) (3) (4) (5)

Number bottles −0.523∗∗∗ −0.601∗∗∗ −0.490∗∗∗ −0.498∗∗∗ −17.701∗∗∗

(0.092) (0.108) (0.099) (0.094) (4.627)

Number bottles, squared 0.029∗∗∗ 0.040∗∗∗ 0.027∗∗∗ 0.028∗∗∗ 1.090∗∗

(0.010) (0.012) (0.010) (0.010) (0.483)

Case of 6 0.680∗∗∗ 0.756∗∗∗ 0.666∗∗∗ 0.688∗∗∗ 17.543∗∗

(0.143) (0.171) (0.154) (0.146) (7.206)
Case of 12 0.633 −0.105 0.544 0.557 15.985

(0.613) (0.823) (0.659) (0.609) (30.830)

Special format bottle 0.102 0.286∗∗∗ 0.076 0.055 −0.651
(0.076) (0.102) (0.082) (0.077) (3.847)

One bottle 0.150 0.049 0.123 0.242∗∗ 18.081∗∗∗

(0.099) (0.115) (0.106) (0.097) (4.963)
Stored in warehouse −0.113 −0.590 −0.099 −0.001 7.954

(0.275) (0.504) (0.296) (0.112) (13.836)
Description: En Primeur 0.121∗∗ 0.018 0.144∗∗∗ 0.163∗∗∗ 4.460∗

(0.050) (0.060) (0.054) (0.049) (2.519)

Description: Parker −0.002 −0.001 −0.007 −0.031 −0.065
(0.040) (0.049) (0.043) (0.039) (2.010)

Description: Number words 0.207∗∗∗ 0.086 0.191∗∗∗ 0.287∗∗∗ 3.828∗

(0.044) (0.057) (0.047) (0.043) (2.222)
Description: Delivery 0.006∗∗∗ 0.004 0.011∗∗∗ 0.007∗∗∗ 0.278∗∗

(0.002) (0.003) (0.003) (0.002) (0.119)

Can Collect 0.064 0.207∗∗∗ 0.114∗∗ 4.979∗∗

(0.045) (0.058) (0.048) (2.280)

Can only Collect −0.144 0.001 −0.306∗∗ 0.300

(0.122) (0.141) (0.131) (6.126)
Returns Accepted −0.103 −0.183 −0.394∗∗ 2.101

(0.165) (0.380) (0.176) (8.299)

Insurance Included 0.049 0.060 0.104∗∗ 3.626∗

(0.043) (0.053) (0.046) (2.159)

Delivers to UK 0.050 −0.137∗∗ 0.003 4.213
(0.051) (0.063) (0.055) (2.585)

Ships with Royal Mail −0.055 −0.142∗∗ −0.058 −1.905

(0.052) (0.064) (0.055) (2.600)
Ships with Parcelforce −0.207∗∗∗ −0.152∗∗∗ −0.175∗∗∗ −7.554∗∗∗

(0.048) (0.053) (0.052) (2.419)

Shipping estimate 0.018∗∗∗ 0.020∗∗∗ 0.014∗∗∗ 0.573∗∗∗

(0.004) (0.006) (0.005) (0.217)

Mentions fast shipping 0.282∗∗∗ 0.460∗∗∗ 0.440∗∗∗ 17.633∗∗∗

(0.071) (0.082) (0.076) (3.595)
Payment by bank 0.161∗ −0.043 0.237∗∗∗ 6.586

(0.085) (0.114) (0.091) (4.272)

Payment by Paypall −0.108∗∗ −0.179∗∗∗ −0.155∗∗∗ −4.290∗

(0.048) (0.064) (0.051) (2.412)

Payment by cheque 0.026 0.025 0.026 −0.140

(0.052) (0.068) (0.056) (2.608)
Payment in cash −0.095 −0.206∗ −0.029 −3.830

(0.114) (0.125) (0.123) (5.752)

Alcohol duty estimate −0.001 0.021 0.003 −0.550
(0.016) (0.037) (0.017) (0.805)

VAT estimate 0.006 −0.006 0.003 0.157
(0.007) (0.024) (0.007) (0.332)

Seller has ratings −0.039 0.040 −0.022 −0.344

(0.047) (0.056) (0.050) (2.341)
Number seller ratings −0.030∗ −0.060∗∗∗ −0.058∗∗∗ −2.278∗∗

(0.018) (0.022) (0.019) (0.904)

Number seller ratings, squared 0.001 0.002∗∗ 0.002∗∗∗ 0.095∗∗

(0.001) (0.001) (0.001) (0.038)

Constant 3.134∗∗∗ 2.474∗∗∗ 3.282∗∗∗ 3.198∗∗∗ 25.816∗

(0.285) (0.373) (0.305) (0.257) (14.355)

Sample (n≥ 2 and) : H̸= r r=0 H ̸= r H ̸= r H ̸= r

Dependent variable: ln(H) ln(H) ln(H) ln(H) H
N dummies: ✓ ✓ ✓ ✓
Observations 1,621 967 1,621 1,621 1,621

R2 0.573 0.666 0.500 0.543 0.491
Adjusted R2 0.548 0.634 0.475 0.523 0.462

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Results from OLS regressions.
The dependent variable is the (log) of the hammer price normalized by the number of bottles in the auction.
All specifications include dummies for the type of wine, ullage level, wine region, and month. The structural
estimates are based on the model specification in column (1).
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Table H. 2—: Results from homogenization step (high-end sample), with alternative specifica-
tions

(1) (2) (3) (4) (5)

Number bottles −0.240∗∗∗ −0.822∗∗∗ −0.242∗∗∗ −0.249∗∗∗ −18.692∗

(0.032) (0.248) (0.032) (0.031) (10.048)

Number bottles, squared 0.005∗∗∗ 0.048∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.414
(0.001) (0.019) (0.001) (0.001) (0.313)

Case of 6 −0.167 0.199 −0.170∗ −0.160 −19.843

(0.104) (0.385) (0.101) (0.099) (32.195)
Case of 12 0.155 −0.208 0.167 0.160 12.086

(0.179) (0.492) (0.175) (0.171) (55.338)

Special format bottle 0.121 0.727∗∗∗ 0.106 0.093 10.465
(0.116) (0.253) (0.114) (0.112) (36.030)

One bottle 0.431∗∗∗ −0.238 0.423∗∗∗ 0.449∗∗∗ 139.407∗∗∗

(0.098) (0.318) (0.095) (0.096) (30.348)
Stored in warehouse −0.278 −1.961∗∗ −0.214 −0.145∗ −50.837

(0.222) (0.789) (0.213) (0.085) (68.666)
Description: En Primeur −0.073 −0.214∗ −0.081 −0.054 −23.331

(0.058) (0.111) (0.055) (0.055) (17.869)

Description: Parker −0.014 −0.072 −0.006 0.001 −4.361
(0.050) (0.089) (0.049) (0.047) (15.320)

Description: Number words −0.107∗ −0.470∗∗∗ −0.105∗ −0.053 −41.798∗∗

(0.062) (0.151) (0.060) (0.056) (19.156)
Description: Delivery 0.002 0.014∗∗∗ 0.001 0.001 0.852

(0.003) (0.004) (0.003) (0.003) (0.978)

Can Collect −0.002 −0.111 −0.005 6.192
(0.061) (0.123) (0.059) (18.737)

Can only Collect −0.429∗∗ −0.934∗∗ −0.423∗∗ −91.617

(0.201) (0.397) (0.197) (62.133)
Returns Accepted −0.071 −0.078 −11.630

(0.122) (0.118) (37.821)
Insurance Included −0.020 −0.116 −0.019 −16.406

(0.054) (0.092) (0.053) (16.656)

Delivers to UK −0.137∗∗ −0.195∗ −0.115∗ −31.564
(0.064) (0.101) (0.062) (19.849)

Ships with Royal Mail 0.106 0.412∗∗∗ 0.118 35.498

(0.075) (0.149) (0.074) (23.316)
Ships with Parcelforce −0.184∗∗ −0.301 −0.196∗∗ −51.695∗∗

(0.084) (0.186) (0.082) (26.010)

Shipping estimate 0.002 −0.010 0.003 0.168
(0.003) (0.008) (0.003) (0.966)

Mentions fast shipping −0.112 −0.182 −0.115 −46.553

(0.105) (0.215) (0.100) (32.338)
Payment by bank −0.137 0.080 −0.119 −55.260

(0.124) (0.219) (0.121) (38.359)

Payment by Paypall −0.110∗ −0.067 −0.096 −22.052
(0.062) (0.139) (0.060) (19.097)

Payment by cheque −0.025 0.086 −0.026 −9.820
(0.069) (0.157) (0.067) (21.331)

Payment in cash 0.437∗ 0.202 0.401∗ 21.667

(0.243) (0.361) (0.235) (75.312)
Alcohol duty estimate 0.006 0.075∗∗ 0.003 0.665

(0.009) (0.032) (0.009) (2.865)

VAT estimate −0.001 0.0001 −0.002 0.132
(0.003) (0.005) (0.002) (0.788)

Seller has ratings 0.022 0.092 0.006 13.565

(0.054) (0.097) (0.052) (16.769)
Number seller ratings −0.049 −0.205∗∗ −0.049 −2.150

(0.037) (0.098) (0.035) (11.293)

Number seller ratings, squared 0.002 0.009∗∗ 0.002 0.189
(0.002) (0.004) (0.001) (0.474)

Constant 6.032∗∗∗ 8.616∗∗∗ 5.849∗∗∗ 5.597∗∗∗ 393.941∗∗∗

(0.427) (1.084) (0.408) (0.378) (132.080)

Sample (n≥ 2 and) : H̸= r r=0 H ̸= r H ̸= r H ̸= r

Dependent variable: ln(H) ln(H) ln(H) ln(H) H
N dummies: ✓ ✓ ✓ ✓
Observations 299 151 299 299 299

R2 0.935 0.930 0.933 0.927 0.738
Adjusted R2 0.914 0.876 0.915 0.911 0.653

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Results from OLS regressions.
The dependent variable is the (log) of the hammer price normalized by the number of bottles in the auction.
All specifications include dummies for the type of wine, ullage level, wine region, and month. The structural
estimates are based on the model specification in column (1).
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Table H. 3—: Differences g(Z) above vs. below median hammer price in main sample

Number bottles −0.173

(0.533)
Number bottles, squared 0.065

(0.094)

Case of 6 −0.849
(1.030)

Case of 12

Special format bottle 0.223∗∗

(0.111)
One bottle −0.291

(0.283)

Stored in warehouse 0.356
(0.575)

Description: En Primeur 0.097

(0.075)
Description: Parker −0.024

(0.058)

Description: Number words 0.191∗∗∗

(0.066)

Description: Delivery 0.002

(0.004)
Can Collect −0.009

(0.070)
Can only Collect −0.028

(0.235)

Returns Accepted −0.498
(0.370)

Insurance Included −0.054

(0.064)
Delivers to UK 0.004

(0.078)

Ships with Royal Mail 0.027
(0.080)

Ships with Parcelforce 0.031

(0.075)
Shipping estimate 0.004

(0.006)
Mentions fast shipping −0.062

(0.145)

Payment by bank 0.131
(0.130)

Payment by Paypall 0.063

(0.072)
Payment by cheque 0.021

(0.079)

Payment in cash −0.149
(0.173)

Alcohol duty estimate −0.042

(0.049)
VAT estimate 0.034

(0.025)

Seller has ratings −0.090
(0.068)

Number seller ratings 0.100∗∗∗

(0.026)

Number seller ratings, squared −0.004∗∗∗

(0.001)
Constant −1.723∗∗

(0.796)

Sample (n ≥ 2 and) H ̸= r
Dependent variable: ln(H)

N dummies: ✓
Observations 1,621
R2 0.801
Adjusted R2 0.778

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Results from OLS regressions.
The dependent variable is the (log) of the hammer price normalized by the number of bottles in the auction.
The specification includes dummies for the type of wine, ullage level, wine region, and month as in column (1)
of Table H. 1. In addition, the variables are interacted with a binary variable indicating that the hammer price
exceeds the median hammer price in the sample. Only the interaction terms and the intercept for above-median
hammer prices are reported.
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I. Numerical approximation of the entry equilibrium

Solving for the entry equilibrium involves hard-to-compute (triple) integrals. This section

details the numerical approximations relied on for computational feasibility. The equilibrium

is computed for homogenized auctions based on conditional value distributions. The notation

does not make explicit that these distributions are in fact the estimated conditional value

distributions. Shorthand notation r̃ = (1 + cB)r
∗ is used and sample size n is omitted from

order statistics. The goal is to approximate for a given fee structure and set of parameter

estimates the entry equilibrium {λ∗
r>0(v

∗
0), λ

∗
r=0, v

∗
0} as respectively defined in (11), (9), and

(13) in the main text. This requires computing the expected surplus from entering the platform

for bidders and sellers as a function of λ and ṽ0 and then solving for the equilibrium values that

satisfy the zero profit entry conditions.

To compute ΠB,r>0

(
ṽ0;λr>0

)
we need to obtain πr>0

B (n, v0) defined in (4) in expectation over

v0 and n, minus entry costs, as in

ΠB,r>0(ṽ0;λ) =

max(n)∑
n=0

[∫ ṽ0

vR0

πr>0
B (n, v0)

fV0|V0≥vR0
(v0)

FV0|V0≥vR0
(ṽ0)

dv0

]
× fNr>0(n;λr>0)− eB,(I.1)

where

πr>0
B (n, v0) =

1

n

∫ v

r̃
vn −max

(
r̃,

∫ vn

v
vn−1dFVn−1|Vn=vn(vn−1)

)
dFVn(vn),(I.2)

FVn(vn) =

∫ vn

v
nFV (x)

n−1fV (x)dx,(I.3)

FVn−1|Vn=vn(vn−1) =

∫ vn

v

(n− 1)FV (y)
n−2fV (y)

FV (vn)n−1
dy,(I.4)

and fNr>0(n;λr>0) is defined in (1). This is sufficient to compute λ∗
r>0 for any value of ṽ0, as
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the unique value λ ∈ [0,max(n)] that sets

ΠB,r>0(ṽ0;λ) = 0.(I.5)

As ΠB,r>0(ṽ0;λ) strictly decreases in λ, λ∗
r>0 solves a threshold-crossing condition that is nested

in the fixed point problem that defines v∗0. Moreover, the triple integral makes πr>0
B costly to

compute for any candidate ṽ0. For auctions with a zero reserve price, λ∗
r=0 is similarly computed

as a threshold-crossing problem based on ΠB,r=0:

ΠB,r=0(λr=0) =

max(n)∑
n=0

πr=0
B (n)fNr=0(n;λr=0)− eB,(I.6)

with πr=0
B (n) defined in (5).

Computing ΠS,r>0(v0;λ
∗
r>0(ṽ0)) relies on πr>0

S (n, v0) defined in (6) in expectation over the

number of bidders, minus entry costs:

ΠS,r>0(v0;λ
∗
r>0(ṽ0)) =

max(n)∑
n=0

πr>0
S (n, v0)fNr>0(n, λ

∗
r>0(ṽ0))− cL − eS(I.7)

πr>0
S (n, v0) =

(
max

(
r,

1

1 + cB

∫ v

v
vn−1dFVn−1|Vn≥r̃(vn−1)

)
×(I.8)

(1− cS)− v0

)[
1− FV(n)

(r̃)

]
FVn−1|Vn≥r̃(vn−1) =

∫ v

r̃
FVn−1|Vn=x(vn−1)dFVn(x)(I.9)

This is sufficient to compute v∗0 for any fee structure and given potential bidders’ best-response

characterized by λ∗
r>0(ṽ0), as the value that sets

ΠS,r>0(ṽ0;λ
∗
r>0(ṽ0)) = 0(I.10)

Given the high computational cost of implementing these functions literally, estimates relies

on numerical approximations. The following pseudo-code is implemented to compute the entry

equilibrium, where object names in bold facilitate easy replication with access to the computer

code.
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• Initiating probability vectors for the simulation of bidder and seller values with impor-

tance sampling. Simulate 250 values from Unif(0, 1) and collect in vector v probs (mak-

ing sure that 1e−4 and 1 − 1e−4 are lower bounds on extremum probabilities). Initi-

ate a finer grid v probs fine by sampling 25000 values from Unif(0, 1) with identical

minimum extremum values. Simulate 500 values from Unif(0, 1) and collect in vector

v0 probs fine (making sure that 1e−4 and 1−1e−4 are lower bounds on extremum prob-

abilities). Sample a coarser grid for seller values by drawing without replacement 48

values from v0 probs fine and add the extremum values, call this vector v0 probs. Set

max(n) = 15 (pick a sensible number based on estimated λ’s). Never change these values.

• Importance sampling of Vn:n and Vn−1:n|Vn:n. Set v = F−1
V (1− 1e−9; θ̂b) and v = 0. Code

the distributions in (I.3) and (I.4). For each n = 1, .., 15, simulate 250 values from the two

distributions. For the highest valuation, solve for F−1
Vn:n

(v probs; θ̂b), separately for each

n, resulting in matrix h mat of dimension [250 × 15]. For the second-highest valuation,

solve for F−1
Vn−1:n|Vn:n=vn

(v probs; θ̂b), where for each entry j in v probs vn equals the jth

entry in h mat from the relevant n column. Doing this separately for each n > 1 results

in matrix sh mat of dimension [250× 15] with the first column made up of zeros.

• Linear interpolation of h mat and sh mat on finer grid using v probs fine, separately

for each n column. This results in two matrices of dimension [25000 × 15], h mat fine

and sh mat fine.

• Calculating optimal reserve price for grid of v0’s. Importance sampling of V0: solve for

F−1
V0

(v0 probs; θ̂s) and store in vector v0 vec of dimension [50 × 1]. Given also θ̂b,

compute optimal r∗(v0 vec) and store in vector r vec.

• Compute listing-level bidder and seller surplus for v0-n combinations. Initiate matrices of

v0 mat, n mat, and r mat with values of v0 in the first dimension and n in the second

dimension (so n mat and r mat are constant in the first dimension and v0 mat is con-

stant in the second dimension). These three matrices are of dimension [50 × 15]. For
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each entry, use the pre-calculated matrices h mat fine and sh mat fine to approximate

listing-level surplus with monte carlo simulations, separately for bidders in auctions with

positive and no reserve prices (the latter being a vector) and for sellers in auctions with a

positive and with no reserve prices (both being matrices). For example, consider a (v0, 2)

combination with v0idx being the index of v0 in the 2nd column of v0 mat. ΠB,r>0(2, v0)

is approximated as the mean of the second column of h mat fine including only all values

exceeding r mat(v0idx, 2)× (1+ cB), minus the mean of the same entries in sh mat fine

or minus r mat(v0idx, 2)×(1+cB) if that is higher, and multiplied by the sale probability

(1− FV (log((1 + cB)r mat(v0idx, 2)); θ̂b)
2), all divided by two.

• Linear interpolation of listing-level surplus on v0 probs fine. This results in listing-level

surplus matrices of dimensions [25000 × 15] for bidders in positive reserve price auctions

(pib posr mat), for sellers in positive reserve price auctions (pis posr mat), and for

sellers in no reserve price auctions (pis nor mat). For bidders in auctions with no reserve

price (pib nor vec) we obtain a vector of dimension [1×15] as their listing-level surplus is

independent of the seller’s value. Also pre-calculate a vector of probabilities that V0 = v0

using F−1
V0|V0≥vR0

(v0 probs) and interpolate on the finer v0 grid, resulting in pdf v0 mat.

• Repeat the five previous steps only once for each new θ̂s or fee structure. With the pre-

calculated listing-level surplus matrices as functions of v0 and n, the computation of

v∗0 as a fixed point problem with a nested threshold-crossing problem to find λ∗
r>0 for each

candidate ṽ0 is fast and straightforward.

• Coding equation (I.7) with nested in it equation (I.5). Make sure that for every candi-

date ṽ0, the entries of pdf v0 mat that function as weights of the listing-level bidder

surplus (the
f
V0|V0≥vR0

(v0)

F
V0|V0≥vR0

(ṽ0)
in (I.1)) sum to one. The λ∗(ṽ0) in (I.5) is obtained as the root

of (ΠB,r>0(ṽ0;λ))
2. Matlab’s fzero function is used with tolerance levels for the function

and parameter of 1e−6, which delivers stable results. Then (I.7) is passed to a nonlinear

solver to find the fixed point, again using fzero root finding with the same tolerance levels.
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Contraction mapping. Relevant for the NPL-like estimation method, the following argu-

mentation shows that v∗0 is characterized by a contraction mapping. Let ΠS(v
j
0, v

−j
0 ) denote the

expected surplus for seller with valuation vj0 when entering the platform and setting a reserve

price, with competing sellers’ entry threshold only affecting ΠS through its effect on the equi-

librium mean number of bidders λ∗
r>0(v

−j
0 ). The fee structure and other exogenous inputs are

omitted from notation. Let v′0(v
−j
0 ) denote the seller’s best-response to threshold v−j

0 ; to enter

if and only if v0 ≤ v′0(v
−j
0 ). A necessary and sufficient condition for v∗0 being characterized by a

contraction mapping is that there are no other values of v−j
0 ̸= v∗0 that deliver zero surplus for

the marginal seller so that v′0(v
−j
0 ) = v−j

0 . We need to consider three cases:

• Case of v−j
0 > v∗0: λ∗(v−j

0 ) < λ∗
r>0(v

∗
0) which means that ΠS(v

∗
0, v

−j
0 ) < 0. Since πS

is decreasing in the seller’s vj0, the resulting v′0(v
−j
0 ) < v−j

0 < v∗0. We conclude that

ΠS(v
−j
0 , v−j

0 ) is not an equilibrium.

• Case of v−j
0 < v∗0: λ∗(v−j

0 ) > λ∗
r>0(v

∗
0) which means that ΠS(v

∗
0, v

−j
0 ) > 0. With πS de-

creasing in the seller’s vj0, the resulting v
′
0(v

−j
0 ) > v−j

0 > v∗0. Also in this case, ΠS(v
−j
0 , v−j

0 )

is not an equilibrium.

• The final case is the unique fixed point in seller cost space, where v−j
0 = v∗0. By definition

of v∗0, ΠS(v
∗
0, v

−j
0 ) = 0 so that v′0(v

−j
0 ) = v−j

0 = v∗0.

This proves that (I.10) is a contraction mapping.
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J. Sensitivity of entry equilibrium to scaling of cL

The expected bidder and seller profits in the presented model are independent of the quality

of the item, due to q = eg(Z) entering values multiplicatively, up to the additive listing fee

cL. This section shows numerically that the impact of cL on the equilibrium is small in the

empirical setting, justifying the omission of q from the derivation of the game’s properties. In

particular, the thought experiment is that the game scales in q if, at least for values of q found

in a reasonably wide interval around v∗0, the difference between using cL and cL
q has little effect

on the resulting entry equilibrium.

Hence, the numerical simulations are based on the estimated parameters at q = 1 and consider

the effect of introducing auction heterogeneity for the estimation of the entry equilibrium.

Quality is continuous and estimated with noise, so this requires some averaging of the estimated

quality across auctions with similar estimated seller values. Average estimated qualities in a grid

of successive distance bins (of various widths) from the seller entry threshold v∗0 are constructed,

as the analysis might depend on the width of the bin and how different the auction’s v̂0t is from

the marginal auction. The following averages are computed:

(I.1) q(i, j) = E
[
q̂t|t : v̂0t ∈ (v∗0 − i× 0.1j, v∗0 − (i− 1)× 0.1j]

]
,

for i = {1, 2, . . . , 10} and j = {1, 2, 3, 4}. For example, q(1, 2) is the average estimated quality

term across all auctions for which the estimated v̂0t is between the maximum value (v∗0) and 0.2

(first window of two times 0.1) below it.

The (i,j) notation also relates to the indices of matrices with simulation results, with the

(i, j)th entry in all six matrices in Table J. 1 referring to the bin definition with the ith distance

band of width 0.1j from v∗0. In other words, going from left to right, the matrix entries contain

increasingly wide distance bins so that more variation in q̂t is smoothed out across auctions.

Going from top to bottom, the matrix entries contain results for adjacent bandwidths.

The least smoothing occurs with bins of width 0.1, e.g. the first columns in all matrices of
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Table J. 1. Bins of this width all contain between 195 and 167 auctions (see the first column

in matrix b). The estimated quality for the marginal listing is 1.44, meaning that the unscaled

listing fee for that bin is £1.5 (compared to £2.1 at q=1), as documented in entry (1,1) of

matrix c). Considering adjacent bins of v̂0t, the largest differences are for q(10, 1) = 1.53.

Taking into account the scaled entry costs (matrix c) and the equilibrium adjustment of bidder

entry (matrix d), the equilibrium seller entry threshold adjusts only slightly in all cases (matrix

e). Matrix f is the most important output of this exercise, interpretting the equilibrium results

relative to what would be the threshold for the marginal sellers (e.g., the entries in the first

row). No absolute adjustments of v∗0 larger than 2.1 percent are found across all bin sizes and

distances from the threshold.74 These results motivate the omission of the dependence of the

entry equilibrium on q.

Table J. 1—: Sensitivity of equilibrium to scaling cL, distance bins from υ̂.

(a) q(i, j)

1.44 1.39 1.37 1.4
1.34 1.41 1.42 1.41
1.34 1.4 1.42 1.43
1.47 1.41 1.43 1.35
1.37 1.49 1.38 1.26
1.44 1.37 1.24 1.28
1.39 1.39 1.27 1.12
1.44 1.31 1.42 1.32
1.45 1.2 1.12 1.02
1.53 1.38 1.45 1.19

(b) Number auctions in bin

143 274 422 575
131 301 474 613
148 321 390 353
153 292 255 169
167 193 127 69
154 160 87 26
146 94 30 9
146 75 20 17
98 45 8 22
95 24 13 32

(c) cL
q(i,j)

1.5 1.5 1.5 1.5
1.6 1.5 1.5 1.5
1.6 1.5 1.5 1.5
1.4 1.5 1.5 1.6
1.5 1.4 1.5 1.7
1.5 1.5 1.7 1.6
1.5 1.5 1.7 1.9
1.5 1.6 1.5 1.6
1.4 1.8 1.9 2.1
1.4 1.5 1.4 1.8

(d) λ∗
r>0(

cL
q(i,j))

4.99 4.88 4.65 4.65
4.88 4.42 5.57 5.45
4.42 5.69 5.11 4.99
4.2 5.34 4.99 4.2
6.04 4.99 4.31 4.31
5.11 4.99 4.2 4.31
5.22 4.42 4.31 4.2
5.34 4.09 4.31 4.31
4.99 4.2 4.2 4.54
4.99 4.31 4.31 4.42

(e) v∗0(
cL

q(i,j))

3.31 3.31 3.31 3.31
3.3 3.31 3.31 3.31
3.3 3.31 3.31 3.31
3.32 3.31 3.31 3.3
3.31 3.32 3.31 3.29
3.31 3.31 3.29 3.3
3.31 3.31 3.29 3.27
3.31 3.3 3.31 3.3
3.32 3.28 3.27 3.24
3.32 3.31 3.32 3.28

(f) v∗0 change w.r.t. i=1 (%)

0 0 0 0
-0.3 0 0 0
-0.3 0 0 0
0.3 0 0 -0.3
0 0.3 0 -0.6
0 0 -0.6 -0.3
0 0 -0.6 -1.2
0 -0.3 0 -0.3
0.3 -0.9 -1.2 -2.1
0.3 0 0.3 -0.9

74Note that different bin sizes and distances from the marginal seller are considered so that some configuration will
capture sufficiently many auctions at reasonable smoothing levels.


